

International Islamic University, Islamabad

Department of Physics Entrance Test Session Fall 2013

Candidate's Name:	 Time Allowed: 2 hrs
Father's Name:	
Roll no.:	
Signature:	

Instructions

- 1. Attempt all the questions
- 2. All questions carry equal marks
- 3. Lead pencil is not allowed to answer the questions
- 4. Any attempt to copy answer from another candidate will result in permanent disbarment from the University for all purposes.
- 5. Use your own calculator. No permission for borrowing from others.

- Q. 1. A system has four degenerate (g_i) energy levels. The levels are E_0 = 0 J with g_0 = 2, E_1 = 1.4 x 10 23 J with g_1 = 3, E_2 = 4.2 x 10 23 J with g_2 = 2 and E_3 = 8.4 x 10 23 J with g_3 = 4. Write partition function.
- Q.2. Calculate the binding energy, binding energy per nucleon, and radius of spherical alpha particle.

Given, mass of a proton = 1.0072u, mass of a neutron = 1.0086u, mass of an alpha particle = 4.0028u, mass of proton = $1.67 \times 10^{-27} kg$, Charge on electron = $1.6 \times 10^{-19} C$.

Q.3. Find the term symbol for carbon $(1s^2, 2s^2, 2p^2)$ in the ground state.

- Q.4. The Secondary coil of a transformer is directly connected to a 5 Ω resistance through which a current of 1 A is flowing.
- a. What will be the value of primary voltage if the number of turns in primary and secondary coils is 10 and 100 respectively?
- b. What current is flowing through the primary coil?
- Q.5. Determine the voltage gain for the circuit shown in figure, with R_{F} = $100\text{K}\,\Omega$ and $R_{\text{i}}\text{=}10$ K Ω .

Q.6. Find the number of atoms per unit cell in primitive unit cell, face centered unit cell, and body centered unit cell.

Q.7. Find the de Broglie wavelength of

- (i) Electron accelerated with a potential difference of 60 V.
- (ii) Neutron of energy 0.03 eV.

Given, mass of electron = 9.1×10^{-31} kg, charge on electron = 1.6×10^{-19} C, mass of neutron = 1.6×10^{-27} kg, Planck's constant (h) = 6.63×10^{-34} Js, 1 eV = 1.6×10^{-19} J.

Q.8. The wave functions of electrons confined in a one-dimensional potential box of dimension "a" is given by,

$$\psi_n = A sin(n\pi/a) x$$

where $n = 1, 2, 3, \cdots$

Evaluate A by normalizing the wave function to unity.

Q.9. Find the general solution of the differential equation using integrating factor,

$$\frac{dy}{dx} + \frac{3y}{x} = \frac{e^x}{x^3}$$

Q.10. A particles of mass M is constrained to move on a horizontal plane in a field of gravity g. A second particle of mass m is constrained to a vertical line. The two particles are connected by a massless string which passes through a hole in the plane. The motion is frictionless. Find the Lagrangian of the system.

