# Revised Scheme of Studies for MS In Mechanical Engineering



DEPARTMENT OF MECHANICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY, INTERNATIONAL ISLAMIC UNIVERSITY ISLAMABAD, PAKISTAN

### **Table of Contents**

| Degree                                                          | 2      |
|-----------------------------------------------------------------|--------|
| Degree Requirement:<br>Duration of the Program                  | 2      |
| Pre-requisite for the program                                   | 2      |
| Intake                                                          | 2      |
| Details Courses for MS in Mechanical Engineering2               |        |
| Course guide lines for MSME Students<br>Evaluation and Grading: | 2<br>2 |
| Compulsory Courses for MSME:                                    | 2<br>4 |
| Course Outlines                                                 |        |



## الجامعة الإسلامية العالمية

International Islamic University, Islamabad Faculty of Engineering & Technology Department of Mechanical Engineering

### Scheme of Studies for MS in Mechanical Engineering

#### Degree

Master of Science in Mechanical Engineering (MSME)

#### **Degree Requirement:**

• MSME: Course work of 24 credit hours plus research work of 6 credit hours. (total credit hours=30)

#### **Duration of the Program**

- Two years
- Maximum duration: Four years

#### Pre-requisite for the program

For MSME: B.Sc./BE (Mechanical Engineering/Relevant area of engineering) with minimum CGPA 2.50/4.00 or 60% marks in annual system + University's Admission Test/ Interview

#### Intake

Twice in a year (Spring & Fall Semester)

#### **Details Courses for MS in Mechanical Engineering**

#### **Course guide lines for MSME Students**

#### 1. Compulsory Courses for MSME:

- i. ME500 Research Methodology
- ii. ME501Advanced Numerical Analysis
- 2. MSME student will have to study courses worth 24 credit hours.
- 3. MSME student has to do compulsory research thesis worth 6 credit hours.
- 4. The roadmap for MSME is given in Table 1.

#### **Evaluation and Grading:**

A detailed account on evaluation criteria and grading policy can be found in Graduate Hand Book. This is in line with IIUI's policies and HEC's guidelines.

More details regarding course work, comprehensive, approval of synopsis, grading semester and thesis evaluation are available in "IIUI RULES, REGULATIONS AND PROCEDURES REGARDING ADMISSIONS, REGISTRATION AND EXAMINATIONS OF MS OR EQUIVALENT AND PhD PROGRAMMES

|                              | Course code        | Course Title                           | Lec Hrs. | Credit Hours        |
|------------------------------|--------------------|----------------------------------------|----------|---------------------|
| ster                         | XXXXX              | Course-I                               | 3        | 3                   |
| sme                          | XXXXX              | Course-II                              | 3        | 3                   |
| t Sc                         | XXXXX              | Course-III                             | 3        | 3                   |
| <b>1</b> s                   | ME 501             | Course-IV, Advanced Numerical Analysis | 3        | 3                   |
|                              |                    | Total Credit Hours                     | 12       | 12                  |
| <u>н</u>                     | Course Code        | Course Title                           | Lec Hrs. | Credit Hours        |
| este                         | XXXXX              | Course-V                               | 3        | 3                   |
| em                           | XXXXX              | Course-VI                              | 3        | 3                   |
| Spi                          | XXXXX              | Course-VII                             | 3        | 3                   |
| 5                            | ME 500             | Course-VIII, Research Methodology      | 3        | 3                   |
|                              |                    | Total Credit Hours                     | 12       | 12                  |
|                              | <b>Course Code</b> | Course Title                           | LecHrs   | <b>Credit Hours</b> |
| d<br>ster                    | ME 699             | Thesis                                 | 3        | 3                   |
| <b>3</b> <sup>r</sup><br>eme |                    |                                        |          |                     |
| Ś                            |                    | Total Credit Hours                     | 3        | 3                   |
| er                           | <b>Course Code</b> | Course Title                           | Lec Hrs. | Credit Hours        |
| lth<br>nest                  | ME 699             | Thesis                                 | 3        | 3                   |
| Sem 4                        |                    | Total Credit Hours                     | 3        | 3                   |
| •1                           | r                  | Fotal Credit Hours of Degree           | 30       | 30                  |

### Table 1: Road Map for MSME program

**Course Code Methodology:** ME = Mechanical Engineering First Numeric = Level of knowledge

First Numeric = Level of knowledge Second and Third Numeric = Serial number

### List of Courses

| MS Courses |                    |                                            |              |
|------------|--------------------|--------------------------------------------|--------------|
| S. No      | <b>Course Code</b> | Course Title                               | Credit hours |
| 1          | ME500              | Research Methodology                       | 3            |
| 2          | ME501              | Advanced Numerical Analysis                | 3            |
| 3          | ME502              | Statistical Analysis                       | 3            |
| 4          | ME503              | Advanced Engineering Materials             | 3            |
| 5          | ME504              | Finite Element Analysis                    | 3            |
| 6          | ME505              | Mechanics Of Composite Materials           | 3            |
| 7          | ME506              | Mechanism Design                           | 3            |
| 8          | ME507              | Condition Monitoring of Rotating Machinery | 3            |
| 9          | ME508              | Robotics                                   | 3            |
| 10         | ME509              | Computational Fluid Dynamics               | 3            |
| 11         | ME510              | Propulsion Engineering                     | 3            |
| 12         | ME511              | Nuclear Engineering                        | 3            |
| 13         | ME512              | Advanced Metal Forming                     | 3            |
| 14         | ME601              | Theory Of Elasticity                       | 3            |
| 15         | ME602              | Experimental Stress Analysis               | 3            |
| 16         | ME603              | Engineering Design Optimization            | 3            |
| 17         | ME604              | Fracture Mechanics                         | 3            |
| 18         | ME605              | Behavior of Materials under Impact Loading | 3            |
| 19         | ME606              | Combustion Engineering                     | 3            |
| 20         | ME607              | Renewable Energy Technology                | 3            |
| 21         | ME608              | Work design and measurement                | 3            |
| 22         | ME609              | Product Design And Development             | 3            |
| 23         | ME610              | Project Management                         | 3            |
| 24         | ME611              | Operations Management                      | 3            |
| 25         | ME612              | Total Quality Management                   | 3            |
| 26         | ME613              | Fatigue of Structures & Materials          | 3            |
| 27         | ME614              | Advanced Mechanical Vibrations             | 3            |
| 28         | ME615              | Advanced Fluid Mechanics                   | 3            |
| 29         | ME616              | Advanced Thermodynamics                    | 3            |
| 30         | ME617              | Advanced Heat Transfer                     | 3            |

#### **Course Outlines**

| ME 500           | <b>RESEARCH METHODOLOGY</b> 3(3+0)                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-Requisite    | Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Course Objective | At the end of this course, the students should be<br>able to:<br>understand some basic concepts of research and its methodologies<br>identify appropriate research topics<br>select and define appropriate research problem and parameters<br>prepare a project proposal (to undertake a project)<br>organize and conduct research (advanced project) in a more appropriate manner<br>write a research report and thesis<br>write a research proposal (grants) |

| Course Outline | The meaning of research, Research and academics, Research problems, Types     |
|----------------|-------------------------------------------------------------------------------|
|                | choice of research topic, Components of research proposal, Literature review, |
|                | Research strategies, Sampling analysis, Data collection, Research ethics,     |
|                | Research access, Data analysis and Report writing                             |
| Recommended    | 1. Research Methodology by Rajendar Kumar                                     |
| Books          | 2. Research Methodology by P. Sam Daniel, Aroma G. Sam                        |

| ME 501               | ADVANCED NUMERICAL ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3(3+0)                              |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Pre-Requisite        | Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |
| Course Objective     | <ol> <li>To integrate a discussion of the properties of engineering and<br/>physical problems with the discussion of methods by which such<br/>problems may be solved numerically</li> <li>To provide understanding of main sources of numerical errors and<br/>the power of numerical methods that minimize these errors</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |
| Course Outline       | the power of numerical methods that minimize these errors<br>Introduction: basic ideas, concepts, terminology, elements of a numerical<br>method: differential formulation, solution domain and mesh, discretization, set<br>of algebraic equations, solution algorithm.<br>Preview: choice of numerical mesh, Cartesian, polar-cylindrical, general<br>orthogonal, regular non-orthogonal, arbitrary triangular meshes, discretization,<br>truncation and discretization errors, Newton's method of solving algebraic<br>equation of single variable, Crammer's rule for solving set of equations, round<br>off errors and their estimation.<br>Polynomials and Finite differences: collocation-type polynomials, finite-<br>difference-operator algebra, forms of polynomials, relationship to Taylor series.<br>Finite differences: differences and Differential operators, basic operator<br>relations, relations of first, second and higher order derivatives to difference<br>series, solution errors.<br>Solution of equation sets: Ill-conditioning, iterative solution methods,<br>Decomposition, Eigen-value problem, system stability, characteristic<br>polynomial, roots, Eigen-values, convergence of solution scheme.<br>Ordinary differential equations: order, methods of solving first order ordinary<br>differential equations, higher order differential equations and their conversion<br>into set of first order ordinary equations.<br>Partial differential equations: variants of partial differential equation, choice of<br>finite-difference formulation and solution algorithm, elliptic, parabolic and<br>hyperbolic equation, first order 1-D transient diffusion equation, first order 1-D |                                     |
| Recommended<br>Books | <ol> <li>Numerical Analysis by Richard L. Burden, John Douglas Faires, 9<br/>Cengage Learning, 2010, ISBN: 0538733519, 9780538733519.</li> <li>Applied Numerical Analysis by Curtis F. Gerald, Patrick O. Whea<br/>Edition (August 10, 2003), Pearson, ISBN-10: 0321133048, ISBN-1<br/>0321133045</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h Edition,<br>atley, 7th<br>3: 978- |

| ME 502               | STATISTICAL ANALYSIS 3(3+0)                                                                                                                                           |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-Requisite        | NIL                                                                                                                                                                   |
| Course<br>Objectives | <ul> <li>To introduces the field of statistics and hypothesis testing.</li> <li>To analyze data – or the information collected when for empirical research</li> </ul> |
| Course Outline       | (1) completely describe a data set (a set of scores) using appropriate descriptive                                                                                    |

|             | statistics,                                                                          |  |  |
|-------------|--------------------------------------------------------------------------------------|--|--|
|             | (2) understand the logic and application of hypothesis testing,                      |  |  |
|             | (3) interpret a set of descriptive statistics and understand the limitations of each |  |  |
|             | measure,                                                                             |  |  |
|             | (4) apply the appropriate inferential statistical technique to situations,           |  |  |
|             | (5) interpret the results of an inferential test and understand the limitations of   |  |  |
|             | each procedure, and                                                                  |  |  |
|             | (6) compute descriptive and inferential statistics.                                  |  |  |
| Recommended | 1. Statistical Data Analysis (Oxford Science Publications) by Glen Cowan             |  |  |
| Books       | 1998.                                                                                |  |  |
|             | 2. An Introduction to Multivariate Statistical Analysis, 2003 by T. W.               |  |  |
|             | Anderson                                                                             |  |  |

| ME 503               | ADVANCED ENGINEERING MATERIALS 3(3+0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pre-Requisite        | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Course Objectives    | <ul> <li>To be able to perform design using advanced materials and carry out research on mechanical properties of these materials.</li> <li>To provide students with the latest developments in material technology and applications of new advanced materials.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Course Outline       | Polymeric Material: High performance fiber, high performance elastomers,<br>high performance coatings, special polymers, moderately high polymers,<br>engineering polymers. Materials development and modification, multilayer and<br>adhesive technology will also be part of this course. Physical and chemical<br>testing of polymers.<br>Fundamentals of polymers: Molecular structure, polymerization processes,<br>morphology of polymer molecules, plasticizers and fillers. Composition and<br>characteristics of principal types of polymers, convention constant rate of<br>elongation test, creep tests, isochronous curves and other forms of data<br>presentation, strain recovery and stress relaxation, anisotropy of properties<br>time-dependence of strength and creep rupture, durability under cyclic loading<br>BS impact tests.<br>Fracture of polymers: Fundamentals of fracture mechanics, application of<br>fracture mechanics to polymers, Kc determinations Kc crack speed curves<br>instability, environmental effects impact testing, application to practical<br>problems.<br>Composites: Composite materials compared with conventional materials, fiber<br>and matrices, composite mechanics, elastic properties, failure processes, failure<br>at notches, notch sensitivity and fracture energy. Fatigue and failure of<br>composite materials. Deterioration of properties owing to environmental<br>conditions, hybrid composite materials, manufacturing the by hand lay-up,<br>preparing specimen for mechanical testing, burn off tests to determine fibre<br>volume fracture. |  |
| Recommended<br>Books | <ol> <li>Polymeric Materials: Structure, Properties, Applications by G. W.<br/>Ehrenstein, HanserVerlag, 2001, ISBN: 1569903107, 9781569903100.</li> <li>Composite Materials: Fatigue and Fracture, edited by Ronald B. Bucinell,<br/>7th Volume, ASTM International, 1998, ISBN: 0803126093, 9780803126091.</li> <li>Composite Materials: Science and Engineering by Krishan Kumar Chawla,<br/>Springer, 1987, ISBN: 0387984097, 9780387984094.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

| ME 504 | FINITE ELEMENT ANALYSIS | 3(3+0) |
|--------|-------------------------|--------|
|        |                         |        |

| Pre-Requisite     | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course Objectives | <ul> <li>To develop comprehensive knowledge in the fundamental mathematical and physical basis of finite element method (FEM).</li> <li>To develop complete FEM solution strategy for analysis of mechanical/thermo-mechanical systems.</li> </ul>                                                                                                                                                                                                                                                                                               |  |
| Course Outline    | The stiffness method and the plane truss, Integral formulations and variational methods, week boundary value problem, Rayleigh – Ritz method, numerical error and accuracy analysis, Eigen value problem, Two and three Dimensional problems, Plane Elasticity, Bending of plates, beams, nonlinearity sources (material and geometric), techniques for nonlinear analysis, Basic Equations of Thermal Analysis, FEs for thermal analysis, Thermal transients, use of commercial FEA codes. Applications of FEA in the relevant fields of study. |  |
|                   | 1. Introduction to Finite Element Method by Frank Stasa, CBS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Recommended       | 2. Finite Element Procedures by Bathe, Prentice Hall.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Books             | 3. ANSYS Manuals, ANSYS Publication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

| ME 505            | MECHANICS OF COMPOSITE MATERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3(3+0)  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Pre-Requisite     | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |
| Course Objectives | <ul> <li>To develop comprehensive knowledge in mechanics of composites</li> <li>To develop skills for design of composites.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |  |
| Course Outline    | Introduction to composite materials, classification and characteristics of<br>composite materials, mechanical behavior of composite materials, macro-<br>mechanical behavior of a lamina, Stress Strain relation for anisotropic<br>materials, Engineering constants for orthotropic materials, Stress strain<br>relations for plane stress in orthotropic materials. Invariant properties of an<br>orthotropic lamina, Strength of orthotropic laminas Biaxial<br>strength theories for an orthotropic lamina, Biaxial strength theories for an<br>orthotropic lamina. Micromechanical behavior of a lamina, Micromechanical<br>behavior of a laminate. Classical lamination theory, special cases of laminate<br>stiffness, strength of laminates. Entertainer stresses. Design of laminates.<br>Bending, buckling and vibration |         |  |
|                   | Analysis and Performance of Fibre Composites, by Agarwal and Bro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | outman, |  |
| Recommended       | 2ndEd, John Wiley, NY, 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |
| BOOKS             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |  |

| ME 506         | MECHANISM DESIGN 3(3+0)                                                                                                                                                                                                                                                                                                                                       |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pre-Requisite  | Nil                                                                                                                                                                                                                                                                                                                                                           |  |
| Course         | To understand kinematics an dynamics of mechanisms                                                                                                                                                                                                                                                                                                            |  |
| Objectives     | To analyze mechanisms                                                                                                                                                                                                                                                                                                                                         |  |
| Course Outline | Kinematics and dynamic characteristics of planar and spatial mechanisms,<br>Vector and<br>graphical methods for kinematics analysis, Introduction to graphical and<br>computer<br>methods for kinematics synthesis of mechanisms, Methods for dynamic<br>analysis of<br>mechanisms, Applications from industrial machine systems and robotics<br>manipulators |  |

| Recommended | Mechanism design: enumeration of kinematic structures according to function, |
|-------------|------------------------------------------------------------------------------|
| Books       | Lung-Wen Tsai, CRC press 2001                                                |
|             |                                                                              |

| ME507                | CONDITION MONITORING OF ROTATING<br>MACHINERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3(3+0)                                                                                                                                                      |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-Requisite        | Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                             |
| Course               | To understand the basics of rotator machinery vibrations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                           |
| Objectives           | To develop skills for the monitoring and maintenance of rotating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng machinery                                                                                                                                                |
| Course Outline       | Introduction to basic concepts of machine condition monitoring, conditions<br>based maintenance techniques in industry, predictive analysis, diagnostic<br>analysis, Major benefits of a conditions monitoring program. Practical machine<br>condition monitoring<br>systems in industry, vibration monitoring wear debris monitoring, temperature<br>monitoring, noise monitoring, performance monitoring, data accusation<br>methods, Data analysis techniques, Data interpretations and diagl1liStics,<br>Instrumentation required.<br>Computer aided machine condition monitoring, Use of rotor dynamic<br>simulation as an aid to fault diagnostics, Intelligent knowledge based expert<br>systems for continuous<br>machine surveillance in advanced condition monitoring. Selection and<br>installation of a Machine condition monitoring system, Analysis of the problem<br>measurable parameters, System requirement, Economic considerations in the<br>selection and installation of a<br>machine surveiling manitoring autom                                |                                                                                                                                                             |
| Recommended<br>Books | Rotating machinery vibration: from analysis to trouble shootin<br>CRC<br>press, 2001<br>Vibratory condition monitoring of machines, JS Rao, CRC pres<br>ME Machanics of Miano Structure 2 Credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng, ML Adams,<br>ss, 2000                                                                                                                                   |
| ME 508               | ROBOTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3(3+0)                                                                                                                                                      |
| Dro Doquisito:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3(3+0)                                                                                                                                                      |
| Pie-Kequisite.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                             |
| Course Objectives    | <ul> <li>To familiarize the students with the concepts and techniques in robot manipulator control, to incorporate robots in engineering systems.</li> <li>To impart fundamentals of manipulators, sensors, actuators, end effectors and product design for automation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                             |
| Course Outline:      | An overview of Robotics, Drive methods, Sensors for<br>description and transformation, Forward kinematics Inv<br>Jacobean, Denavit-Hartenherg coordinate transformations<br>relations, Trajectory planning, Dynamics, Lagrange equations,<br>PID control, Inverse dynamics feed forward control, Nonline<br>control. open-Loop Manipulators, Closed Loop Linkages,<br>Drives, Wrist Mechanisms, Tendon Driven Robotics Hands<br>including contact sensors and proximity sensors, Machine<br>Robotics application growth and cost.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | robots. Spatial<br>erse Kinematics<br>s, Force/Torque<br>Position control,<br>ear and two parts<br>Epicyclical Gear<br>s. Robot Sensors<br>e vision systems |
| Recommended          | 1. Robotics: Modeling, Planning and Control Advanced Textbo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ooks in Control                                                                                                                                             |
| Books                | and Signal Processing, by Lorenzo Sciavicco, Springer, 2009,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ISSN 1439-                                                                                                                                                  |
|                      | 2232, ISBN: 1846286417, 9781846286414.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1., 11                                                                                                                                                      |
|                      | 2. Springer Handbook of Robotics Gale virtual reference libra<br>Bruno Siciliano, OussamaKhatib, Springer, 2008, ISBN: 35402<br>9783540239574.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ry, eatted by<br>23957X,                                                                                                                                    |
|                      | 3. Introduction to Robotics: Mechanics and Control By John J. Hall: 3rd Edition (August 6, 2004), ISBN-10: 0201543613, ISBN-10: 0201543614, ISBN-10: 0201543614, ISBN-10: 0201543614, ISBN-10: 02015436444, ISBN-10: 0201544444444444444444444444444444444444 | Craig, Prentice<br>BN-13: 978-                                                                                                                              |

|                   |                                                                                                                                                               | 2(2.0)      |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ME509             | COMPUTATIONAL FLUID DYNAMICS                                                                                                                                  | 3(3+0)      |
| Pre-Requisite     |                                                                                                                                                               |             |
| Course            | To understand numerical methods to model fluid flow behaviour                                                                                                 | •           |
| Objectives        |                                                                                                                                                               |             |
|                   | Introduction; partial differential equation; Basics of finite-difference                                                                                      | methods;    |
| Course Outline    | Concepts of error, consistency and stability; Momentum and energy                                                                                             | equations;  |
|                   | Diffusion equations; Turbulence modeling; Boundary layer col                                                                                                  | mputational |
| Decommonded       | Computational Eluid Machanics and Heat Transfer by Anderson Ta                                                                                                | n ala:11 P  |
| Pooks             | Computational Fluid Mechanics and Heal Transfer by Anderson, Ta                                                                                               | neniii, a   |
| DUUKS<br>ME510    | Pleicher, Hemisphere Fub, NT 1964                                                                                                                             | 2(2 + 0)    |
| Dro Doguigito     | rkorulsion Engineeking                                                                                                                                        | 3(3+0)      |
| Pre-Kequisite     | nu<br>The chiestines of this course are to develop on understanding of how                                                                                    |             |
|                   | The objectives of this course are to develop an understanding of now                                                                                          | air-        |
| Course            | breating engines and chemical rockets produce thrust; an ability to a                                                                                         |             |
| Objectives        | engine performance analysis calculations, an ability to carry out performance analysis calculations for individual angine components; an ability to carry out | ormance     |
| Objectives        | performance analysis for chemical rockets: an understanding of elem                                                                                           | antory      |
|                   | overall engine design considerations                                                                                                                          | ientai y    |
|                   | Dynamics and thermodynamics of perfect gases. Quasi-one-dimensional                                                                                           | onal flow   |
|                   | thrust and efficiencies Aircraft jet engines propellers ramiets Subs                                                                                          | onic inlets |
| Course Outline    | supersonic inlets. Turboiets, turbofans, turboprons, Engine performa                                                                                          | nce engine  |
|                   | and aircraft matching. Engine performance, engine and aircraft matching.                                                                                      | hing        |
|                   | Chemical rockets thrust chambers nozzles Liquid and solid propell                                                                                             | ant engines |
| Recommended       | P.G. Hill and C. R. Peterson <i>Mechanics and Thermodynamics of Pra</i>                                                                                       | onulsion    |
| Books             | Addison Wesley, 2 <sup>nd</sup> Edition, 1992.                                                                                                                | opuision,   |
| ME511             | NUCLEAR ENGINEERING                                                                                                                                           | 3(3+0)      |
| Course Objectives | To understand basic of nuclear power                                                                                                                          | - ( /       |
| 5                 | To classify, design and maintain nuclear power plants                                                                                                         |             |
| Course Outline    | Nuclear structure; Nuclear stability; Binding energy and mass -                                                                                               |             |
|                   | energy equivalence; Radioactivity (natural and artificial); Decay rate                                                                                        | e;          |
|                   | Mean life and half life; Radioactive equilibrium; Nuclear Reactions;                                                                                          | Q value;    |
|                   | Fission reaction; Elastic and inelastic scattering, Neutron reaction; N                                                                                       | eutron      |
|                   | flux; Cross section for scattering, absorption and fission; Neutron dif                                                                                       | fusion      |
|                   | Neutron leakage; Solution of diffusion equation for a bare reactor; A                                                                                         | lbedo and   |
|                   | reflector saving, Neutron slowing down; Continuous slowing down r                                                                                             | nodel'      |
|                   | Lethargy; Slowing down power; Moderation ratio, Fermi age. Types                                                                                              | s of        |
|                   | Nuclear Reactors                                                                                                                                              |             |
|                   | Introduction, Pressurized Water Reactor (PWR), and Primary Loop,                                                                                              |             |
|                   | Pressurize, Chemical Shim Control A PWR Power plant, Boiling Wa                                                                                               | ater        |
|                   | Reactor (BWR), and Load Following Control, Current BWR System                                                                                                 | High        |
|                   | Temperature Gas Cooled Reactor (HTGR), Advanced                                                                                                               |             |
|                   | Gas Cooled Reactors (AGR). Fast Breeder Reactor and Power plants                                                                                              |             |
|                   | Introduction, Nuclear Reactions, Conversion and Breeding, Liquid N                                                                                            | Ietal Fast  |
|                   | Breeder Reactor (LMFBR) Plant arrangements, LMFBR, Gas Coole                                                                                                  | d Fast      |
|                   | Breeder Reactor (GCFBR). Reactor Materials                                                                                                                    |             |
| Decommond - 1     | Unoice of a moderator; the fuel; the coolant; Nuclear fuels                                                                                                   |             |
|                   |                                                                                                                                                               |             |
| Recommended       | Nuclear Power Plants by MM Elwakii                                                                                                                            |             |

|--|

| Pre-Requisite        | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course Objectives    | <ul> <li>To provide student with the understanding of mechanics &amp; various materials widely used in metal forming processes.</li> <li>To develop ability evaluating the basic design methodologies for metal forming contents.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Course Outline       | <ul> <li>Iorming contents.</li> <li>Macroscopic Plasticity &amp; Yield Criteria: Tresca, &amp; Von Mises criterion; Plastic work, Effective stress; Effective strain; Flow rules for plastic stress – strain relations; Principle of normality.</li> <li>Work hardening &amp; Plastic instability: Tensile test; Mechanical properties; Nominal and true stress-strain curves; work hardening expression; Behavior after necking; Direct compression; Bulge test; Plane-strain compression test. General approach to instability; Balanced biaxial tensin; Thin-walled sphere internal pressure; significance of instability. Strain Rae and Temperature: Strain rate; Super plasticity; combined stress and strain-rate effects; Strain rate dependence; Temperature dependence of flow stress; Hot working; temperature rise during deformation.</li> <li>Ideal Work: Ideal Work or uniform energy; Extrusion &amp; rod drawing; Friction; Redundant work, and mechanical efficiency; Maximum drawing reduction.</li> <li>Slab analysis: Sheet drawing; Comparison of slab method &amp; ideal work method; wire drawing; Direct compression in plane strain; Average pressure during plane-strain compression; Sticking friction; Axisymmetric compression; Flat rolling.</li> <li>Bending: Spring back in sheet bending; Bending with superimposed tension; Sheet bend ability; Bending of sheets &amp; tubes; Forming limits in shape bending. Cupping, Redrawing, and Ironing Cup drawing; Effects of work hardening; Deformation efficiency; Effects of tooling; Redrawing; Ironing. Complex Stamping: Localized necking in biaxial stretching; Formability; Formain limit diagrams; Cupping test; Edge cracking; Bulk forming tests.</li> <li>1. Metal Forming Mechanics and Metallurgy by William F. Hosford and Robert</li> </ul> |  |
| Recommended<br>Books | <ol> <li>Metal Forming Mechanics and Metallurgy by William F. Hosford and Robert<br/>M. Caddell.</li> <li>Theory of Plasticity by J. Lubli</li> <li>Mechanical Metallurgy by Dieter</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Recommended<br>Books | <ol> <li>CAD/CAM by McMohen&amp; Brownie.</li> <li>Product Design &amp; Development by Ulrich Eppinger</li> <li>Total Design by Pugh.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |

| ME 601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THEORY OF ELASTICITY                                                                                                                                                                                                  | 3(3+0)                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Pre-Requisite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NIL                                                                                                                                                                                                                   |                                                                                                                        |
| Course Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>To develop concepts related to theory of elasticity and methors solving the problems.</li> <li>To apply the methods of theory of elasticity in technical calc the basis of illustrative examples.</li> </ul> | ods of<br>ulations on                                                                                                  |
| Course Outline Cartesian Tensor Analysis, 3D state of stress and stress transprincipal stresses and planes. Mohr's Representation, Stress small theory, Strain displacement relations, Strain compatibility equations Strain relation, Lame's and engineering constants. Formulating of elasticity, Bi-harmonic equation, Stress function. Plane stress and problem in Cartesian and polar coordinates. Principle of su Uniqueness of elasticity solution, Axisymmetric plane problems. Streshold. General solution of torsion problem. Solution derived from the provide the solution of torsion of cell sections. But the streshold is the solution of torsion of cell sections. |                                                                                                                                                                                                                       | sformation,<br>deformation<br>ons. Stress-<br>problem in<br>plane strain<br>perposition,<br>emi inverse<br>n equations |

|                                                                                                                  | equations of the theory of elasticity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                  | 1. Theory of Elasticity by S. P. Timoshenko and Goodier, McGraw-Hill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Recommended                                                                                                      | 2. Elasticity, Tensor and Dyadic Approach by Pe-Chi-Chou, John Wiley.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Books                                                                                                            | 3. Advance Mechanics of Material by Hugh Ford, McGraw-Hill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| ME 602                                                                                                           | <b>EXPERIMENTAL STRESS ANALYSIS</b> 3(3+0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Pre-Requisite                                                                                                    | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Course Objectives                                                                                                | <ul> <li>To learn the basics of commonly used Experimental Stress analysis techniques.</li> <li>To train students in the modern methods of measuring strains (stresses), displacements, etc.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Course Outline                                                                                                   | Revision of Fundamental concepts of stress and strain in two and three<br>dimensional. Mechanical and electrical gauges. Electrical resistance strain gage<br>material, Foil and wire gages, Two and three elements rosette, Cross sensitivity<br>factor, Potentiometer and Wheatstone bridge circuit, Full-half and quarter<br>bridge circuit, Strain indicators, Data acquisition systems, Transducers. Optics<br>description of light as an electromagnetic wave. Maxwell's equations. Design<br>of optical elements. Wave plates. Theory of diffraction of light, Stress optic<br>law, Photo-elasticity. Caustics. Stress Freezing, Scattered ray and brittle coating<br>techniques. Grid methods. Brittle coatings. Laser interferometry. Moire<br>interferometry. Normal and transverse displacement interferometers.<br>Mechanical testing of ductile and brittle materials. Quasi-static loading,<br>Dynamic loading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                  | <ol> <li>Experimental Stress Analysis by J. W. Dally and W. F. Riley.</li> <li>Handbook on Experimental Mechanics. Edited by Albert S. Kobayashi.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Recommended<br>Books                                                                                             | 2. Handbook on Experimental Mechanics. Edited by Albert S. Kobayashi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Recommended<br>Books<br>ME 603                                                                                   | 2. Handbook on Experimental Mechanics. Edited by Albert S. Kobayashi.ENGINEERING DESIGN OPTIMIZATION3(3+0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Recommended<br>Books<br>ME 603<br>Pre-Requisite:                                                                 | 2. Handbook on Experimental Mechanics. Edited by Albert S. Kobayashi.         ENGINEERING DESIGN OPTIMIZATION       3(3+0)         NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Recommended<br>Books<br>ME 603<br>Pre-Requisite:<br>Course Objectives                                            | <ul> <li>2. Handbook on Experimental Mechanics. Edited by Albert S. Kobayashi.</li> <li>ENGINEERING DESIGN OPTIMIZATION 3(3+0)</li> <li>NIL</li> <li>To provide knowledge about traditional optimization techniques and newer techniques for multidisciplinary optimization.</li> <li>To develop ability for proper engineering optimization problem statement and select which method is appropriate for a given application.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Recommended<br>Books<br>ME 603<br>Pre-Requisite:<br>Course Objectives<br>Course Outline:<br>Recommended<br>Books | <ol> <li>Handbook on Experimental Mechanics. Edited by Albert S. Kobayashi.</li> <li>ENGINEERING DESIGN OPTIMIZATION 3(3+0)</li> <li>NIL         <ul> <li>To provide knowledge about traditional optimization techniques and newer techniques for multidisciplinary optimization.</li> <li>To develop ability for proper engineering optimization problem statement and select which method is appropriate for a given application.</li> </ul> </li> <li>Modeling. Mathematical modal. Nature of design process. Analysis and design models. Optimal design. Formal optimization model. Bounded ness, Feasibility and constraint activity. Topography of the design space. Mathematical review. Notation. Multi-variable functions. Continuity gradient and definite matrices. Convergence of algorithms. Conditions of optimality: necessary and sufficient conditions for unconstrained and constrained optima. Meeting of LaGrange multipliers. Methods of unconstrained optima. One dimensional minimization. Bisection and golden section initial bracketing, Polynomial interpolation. Multi-dimensional minimization. Steepest descent. Conjugate direction &amp; conjugate gradient methods. Newton's method and its modifications. Quasi-Newton methods. Scaling. Stopping criteria. Methods for constrained optima. Interior and exterior penalty method. Augmented lagrangian method. Direct methods.</li> <li>Principles of Optimal Design by Papalambros&amp; Press, USA. Wilde, McGraw-Hill</li> <li>A trade ductior To Optimal Design by Papalambros&amp; Press, USA. Wilde, McGraw-Hill</li> </ol> |  |
| Recommended<br>Books<br>ME 603<br>Pre-Requisite:<br>Course Objectives<br>Course Outline:<br>Recommended<br>Books | <ul> <li>2. Handbook on Experimental Mechanics. Edited by Albert S. Kobayashi.</li> <li>ENGINEERING DESIGN OPTIMIZATION 3(3+0)</li> <li>NIL         <ul> <li>To provide knowledge about traditional optimization techniques and newer techniques for multidisciplinary optimization.</li> <li>To develop ability for proper engineering optimization problem statement and select which method is appropriate for a given application.</li> </ul> </li> <li>Modeling. Mathematical modal. Nature of design process. Analysis and design models. Optimal design. Formal optimization model. Bounded ness, Feasibility and constraint activity. Topography of the design space. Mathematical review. Notation. Multi-variable functions. Continuity gradient and definite matrices. Convergence of algorithms. Conditions of optimality: necessary and sufficient conditions for unconstrained and constrained optima. Meeting of LaGrange multipliers. Methods of unconstrained optima. One dimensional minimization. Bisection and golden section initial bracketing, Polynomial interpolation. Multi-dimensional minimization. Steepest descent. Conjugate direction &amp; conjugate gradient methods. Newton's method and its modifications. Quasi-Newton methods. Scaling. Stopping criteria. Methods for constrained optima. Interior and exterior penalty method. Augmented lagrangian method. Direct methods.</li> <li>Principles of Optimal Design by Papalambros&amp; Press, USA. Wilde, McGraw-Hill</li> <li>Introduction To Optimum Design by J. Arora,</li> </ul>                                       |  |

|                       | • To calculate the stress-strain and load-displacement fields around a             |
|-----------------------|------------------------------------------------------------------------------------|
|                       | crack tip.                                                                         |
|                       | • Identify and formulate stress intensity factor, strain energy release rate,      |
| Course                | and the stress and strain fields around a crack tip for linear and non             |
| Objectives            | linear materials.                                                                  |
|                       | • To define and predict fracture toughness of materials and be familiar            |
|                       | with the experimental methods to determine the fracture toughness, and             |
|                       | • To design materials and structures using fracture mechanics approaches.          |
|                       | Introduction to fracture mechanics. Types of cracks. Fracture toughness, stress    |
|                       | intensity factors. Crack opening modes. Singular stress fields, Crack tip stress   |
| <b>Course Outline</b> | fields. Ductile to brittle transition. Linear elastic and elastic-plastic fracture |
|                       | mechanics, J-integral, Post yield fracture mechanics, Failure theories. Fracture   |
|                       | mechanics in design, experimental and analytical procedure in fracture             |
|                       | mechanics. Case studies: ships, aerospace, and nuclear reactors                    |
| ME 605                | <b>BEHAVIOR OF MATERIALS UNDER IMPACT LOADING</b> 3(3+0)                           |
| Pre-Requisite         | Nil                                                                                |
| Course                | To understand impact phenomenon                                                    |
| Objectives            | To design against impact loading                                                   |
|                       | Stress waves: Propagation of elastic waves in continuum. Wave Reflections and      |
|                       | interaction. Solution of wave equation by method of characteristics.               |
|                       | Experimental                                                                       |
|                       | techniques, diagnostic tools: Laser interferometry, rotating cameras.              |
|                       | Experimental                                                                       |
|                       | techniques for impact loading hopkinsion bar, kolsky bar, fracture Bar, gas gun.   |
|                       | Material behavior under high strain rates: Steel, Aluminum alloys, MMCs,           |
| Course Outline        | Plastics.                                                                          |
|                       | Dynamic Fracture: Fracture Mechanics, Limiting Crack Speed. Crack                  |
|                       | Branching.                                                                         |
|                       | Stress wave loading of cracks. Spalling. Fragmentation. Dynamic fracture of        |
|                       | steels,                                                                            |
|                       | Aluminum alloys, Plastics. Applications: introduction. Shaped charges and          |
|                       | projectiles.                                                                       |
|                       | reneuration. Armor. Dynamic Effects in Geological Materials. Dynamic Events        |
|                       | III                                                                                |
|                       | C                                                                                  |

| ME 606               | COMBUSTION ENGINEERING                                                                                                                                                                                                                                                                                                                                                                    | 3(3+0)      |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Pre-Requisite        | NIL                                                                                                                                                                                                                                                                                                                                                                                       |             |
| Course<br>Objectives | To understand the fundamental relationships between mass, mole forms, and temperature                                                                                                                                                                                                                                                                                                     | es, energy  |
|                      | To understand the basics of combustion kinetics and mechanisms                                                                                                                                                                                                                                                                                                                            | 1           |
| Course Outline       | Combustion thermodynamics, introduction to chemical kinetics of combustion, combustion properties of fuels, flammability of combustible mixtures. Flame propagation mechanisms, pre-mixed and diffusional; stability of flames; introduction to combustion aerodynamics, jet flames; atomization; droplet and spray combustion. Elementary ignition concepts and theory. Basic detonation |             |
| December             |                                                                                                                                                                                                                                                                                                                                                                                           | · 1         |
| Kecommended          | 1. Compussion: physical and chemical fundamentals, modeling and                                                                                                                                                                                                                                                                                                                           | simulation, |

| Books                | <ul> <li>experiements, pollutant formation, J Warnatz, Ulrich Maas and Robert W Dibble, fourth ed., Springer, 2006</li> <li>2. Combustion, Irvin Glassman and Richard A Yetter, fourth ed., Academic press, 2008</li> </ul>                                    |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ME 607               | <b>RENEWABLE ENERGY TECHNOLOGY</b> 3(3+0)                                                                                                                                                                                                                      |  |
| Pre-Requisite        | NIL                                                                                                                                                                                                                                                            |  |
| Course<br>Objectives | The main purpose of this course is to introduce students to renewable energy resources availability, potential and deplorability as a substitute for conventional energy resources in future energy demand.                                                    |  |
| Course Outline       | Introduction to conventional and Renewable energy sources environmental<br>impacts, challenges and future trends, fundamentals, potential, estimation and,<br>applications, Solar Energy, Wind Energy, Hydropower, Biomass, Geothermal<br>Energy, Ocean Energy |  |
| Recommended          |                                                                                                                                                                                                                                                                |  |
| DUUKS                |                                                                                                                                                                                                                                                                |  |

| ME 608         | WORK DESIGN AND MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3(3+0)                 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Pre-Requisite  | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |
| Course         | To calculate the time that a task or set of tasks should take to be<br>To apply predetermined time values to activities from memory o<br>data card according to the rules of BasicMOST work measureme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | performed.<br>r from a |
| Objectives     | To observe operator activities and write accurate method descriptions using the work measurement system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
| Course Outline | the work measurement system.<br>Understand the foundation of work measurement, Learn why work<br>measurement is important to an organization.Learn about the traditional work<br>measurement techniques of time study and predetermined motion time<br>systems.Application courses designed to teach and provide practice in<br>completing sequence models.Video courses designed to guide the participant<br>through the complete process of identifying objects and measuring work with<br>MOST. Learn the four basic sequence models used in the BasicMOST work<br>measurement system, General Move – work measurement sequence model for<br>the movement of an object freely through the air.Controlled Move – work<br>measurement sequence model for the movement of an object while it remains in<br>contact with a surface or is attached to another object during movement.Tool<br>Use – work measurement sequence model for the use of common hand<br>tools.Equipment Use - sequence model for various administrative activities. |                        |
| Recommended    | 1. Motion and Time Study: Design and Measurement, by Ralph M. Barnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |
| Books          | 2. Work Measurement and Methods Improvement, by Lawrence S. Aft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |

| ME 609            | PRODUCT DESIGN AND DEVELOPMENT                                                                                                                                                                   | 3(3+0) |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Pre-Requisite     | NIL                                                                                                                                                                                              |        |
| Course Objectives | <ul><li>To learn methods of reducing development costs and time necessary for commercialization.</li><li>To enable students to co-ordinate and schedule the activities involved in the</li></ul> |        |

|                | design and development of products within the entire set of activities,             |
|----------------|-------------------------------------------------------------------------------------|
|                | taking into account time, tasks, resources and manufacturing.                       |
| Course Outline | Design process, advanced technology for design process, idea generation and         |
|                | creative problem solving, Project-centered subject addressing transformation of     |
|                | new ideas into technology based products, attaining a proper match between          |
|                | product and marketplace. Product design specification, Product design issues:       |
|                | evaluation, market perception, aesthetics and human interfacing, Design for         |
|                | manufacturability, reliability, and repair ability, pricing and legal implications. |

| ME 610               | PROJECT MANAGEMNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3(3+0) |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Pre-Requisite        | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Course<br>Objectives | To understand the concepts of project definition, life cycle, and<br>systems approach;<br>To develop competency in project scooping, work definition, and<br>work breakdown structure (WBS);<br>To handle the complex tasks of time estimation and project<br>scheduling, including PERT and CPM                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| Course Outline       | Project management growth: concepts and, definitions, organizational structures, organizing and staffing the project office and team, management functions, planning, network scheduling techniques, project graphics, pricing and estimating, cost control, trade-off analysis in a project environment, risk management                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| Recommended<br>Books | <ol> <li>Project Management Institute (PMI). A Guide to the Project<br/>Management of Knowledge (PMBoK). Newton Square, PA. 1996.<br/>(Reference)</li> <li>J.R. Meredith and S.J. Mantel. Project Management: A Managerial<br/>Approach. John Wiley and Sons. New York. 1995. (Reference).</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
|                      | 3. Project Management, A system approach, planning, scheduling and control by Harold Kerzner. Latest Edition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| ME 611               | OPERATIONS MANAGEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3(3+0) |
| Pre-Requisite        | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Course<br>Objectives | To provide students with a state-of-the-art overview of operations<br>management. The goal is to teach the fundamental principles of<br>operations and how they relate to making a firm more competitive.<br>Operations Strategy for Competitive Advantage, designing operations,<br>managing operations, and quantitative modules.                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Course Outline       | This course covers topics related to operations management such the difference between manufacturing and services organisations, characteristics of operations managers, and the relationship between operations, productivity and competitiveness. This is extremely useful for anyone interested in a career in operations management. Introduction to Operations and Supply Management, Forecasting, Process Design, product/service, process, facility, waiting lines, work, systems and location, Quality Management, Capacity Planning and Inventory Control, - lean manufacturing,, inventory management, material, requirements planning, just-in-time, enterprise resource, planning, scheduling and control, Supply Chain Management |        |

| Recommended          | 1. Operations Management by Barron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| Books                | 2. Operations Management by Jay Heizer, Barry Render-, 10th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |  |
|                      | Edition (2011).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |  |
| ME 612               | TOTAL QUALITY MANAGEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3(3+0) |  |
| Pre-Requisite        | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |  |
| Course<br>Objectives | The course aims to impart knowledge on the quality management<br>process and key quality management activities<br>Demonstrate how to design quality into product and services,<br>describe the importance of developing a strategic plan for Total<br>Quality Management.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |
| Course Outline       | Introduction to TQM, ISO-9000 Quality Model, Quality in manufacturing and service, Principles of total quality management, Leadership and Strategic planning, A focus on the customer, Quality measurement, Method for continuous improvement, Participation and teamwork, Implementation issue and strategies, inspection & quality control. Control Charts and their applications. Economics & quality control, Life testing, reliability, reliability prediction and calculations, reliability enhancing techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |  |
| Recommended<br>Books | <ol> <li>Total Quality Management by James R. Evans, American<br/>Management Assoc.</li> <li>Total Quality Management by Johns OrnlandAmriu S. Soha, Pacific<br/>Rim</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |  |
| ME 613               | FATIGUE OF STRUCTURES & MATERIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3(3+0) |  |
| Pre-Requisite        | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |  |
| Course<br>Objectives | • To give students an applied understanding of the three basic methods of fatigue analysis (stress-life, strain-life, fracture mechanics) for all classes of materials. Emphasis is placed on the engineering experience practice using practical homework problems and short projects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |  |
| Course Outline       | Introduction and brief review Historical Overview Macro and Micro<br>Aspects of Fatigue -Fracture surfaces -Fatigue Mechanism Crack<br>nucleation Crack growth Fatigue failure Stress-Life Analysis - S-N<br>Curves - Mean Stress Effects (Goodman, Soderburg, Gerber) -<br>Modifying Factors (Marin) Strain-Life Analysis - Fundamental<br>Material Behaviour - Plasticity Relations - Elastic and Plastic Strain<br>Components - Strain-Reversal Curves Fracture Mechanics (Fatigue<br>Crack Propagation) Analysis - LEFM - Fatigue Crack Growth Curves<br>- Relationships (Paris Power Law, Forman) - Closure Effects, Short<br>Cracks, Stress Raisers Effects of Notches, Variable Loading, Multi-<br>Axial Loading and Other Conditions - Blunt vs Sharp Notches in<br>Brittle and Ductile Materials - Damage Parameters and Combined<br>Loading (Palmgren-Miner, Rainflow) 19.Equivalent Stress and Strain<br>Corrosion & Fretting Fatigue Fatigue and Failure of Joints and<br>Structure Methods to enhance fatigue resistance |        |  |
| Recommended<br>Books | <ol> <li>Fundamentals of Metal Fatigue Analysis, by Julie A.<br/>Bannantine, Jess, J. Comer, James L. Handrock, Prentice Hall<br/>Pub 1990</li> <li>Schijve, J., and T. U. Delft. "Fatigue of Structures and<br/>Materials' Kluwer Academic Publishers." PO Box 17: 3300.</li> <li>Stephens, Ralph I., et al. Metal fatigue in engineering. John<br/>Wiley &amp; Sons. 2000</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |

| ME 614                                 | ADVANCED MECHANICAL VIBRATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3(3+0) |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Pre-Requisite                          | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| Course<br>Objectives                   | <ul> <li>To learn application of analytical and computational methods for machine design and vibration control problems.</li> <li>To enable students in conducting basic vibration analysis of systems with a large number of degrees of freedom.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| Course Outline                         | Properties of vibrating system, Lagrange's equation. Continuous systems:<br>Transverse vibration of string of cable, longitudinal. Use of computers for<br>solution of vibration problems. Orthogonality of Eigen vectors, modal matrix,<br>normal mode summation, computational methods, Gauss elimination, matrix<br>iteration to the Finite Element Method, mode summation procedures for<br>continuous systems, random vibrations, non-linear vibrations, perturbation<br>method, phase plan, modal analysis.                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| Recommended<br>Books                   | <ol> <li>Mechanical Vibrations, S. S. Rao, Prentice Hall, 5th edition.</li> <li>Theory of Vibration with Applications, W. T. Thomson, Prentice Hall, 5th edition.</li> <li>Fundamentals of Mechanical Vibrations, S. G. Kelly, McGraw-Hill, 2nd edition.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| ME 615                                 | ADVANCED FLUID MECHANICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3(3+0) |
| Pre-Requisite                          | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| Course<br>Objectives<br>Course Outline | <ul> <li>To train students to identify, formulate and solve engineering problems concerning internal and external flows.</li> <li>To formulate the boundary layer problems and momentum integral equation and to obtain the exact solutions or the approximate solutions of the momentum equation.</li> <li>Laminar and turbulent boundary layer flow with and without heat transfer, boundary layer separation stability transition and control.</li> <li>Kinematics and dynamics of flow of continuous media, Navier-Stokes equation, simplification, exact and approximate solution. Irrational of hydrodynamics stability, turbulence, free shear flows, chemical reactions, and shock expansion.</li> <li>Rotating Fluid Machinery: Aero dynamics of compressors &amp; turbines, subsonic, transonic and supersonic flow characteristics, secondary flow and stall stability, components matching of</li> </ul> |        |
| Recommended<br>Books                   | <ol> <li>total non-dimensional representation of performance.</li> <li>William Graebel, <i>Advanced Fluid Mechanics</i>, Academic Press</li> <li>K. Muralidhar, GautamBiswas, <i>Advanced Engineering Fluid Mechanics</i>, Alpha Science<br/>International.</li> <li>ArvedJaanRaudkivi, Robert A. Callander, <i>Advanced Fluid Mechanics: An Introduction</i>, John<br/>Wiley &amp; Sons, Incorporated.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| ME 616                                 | ADVANCED THERMODYNAMICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3(3+0) |
| Pre-Requisite                          | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| Course Outline                         | Equilibrium of thermodynamics systems: spontaneous changes, criterion of stability,<br>equilibrium of system.<br>System of constant chemical composition: thermodynamic properties, equation of state, law of<br>corresponding states, relations for pure substance, the third law of thermodynamics, Gibbs free<br>energy equation, heats of reaction or calorific values, adiabatic combustion, heats of formation<br>and Hess's law, entropy of ideal gas mixtures.<br>Gas mixtures of variable composition: chemical potential, stoichiometery and dissociation,<br>chemical equilibrium, equilibrium constant and heat of reaction, Van't Hoff's equation,<br>temperature rise due to combustion reaction, Lighthill ideal dissociating gas, ionization of<br>monatomic gases, non -equilibrium processes, equilibrium and frozen flows.                                                                        |        |

| Recommended<br>Books | <ol> <li>Ibrahim Dincer and Marc A. Rosen, Elsevier, Exergy: Energy, Environment and Sustainable<br/>Development.</li> <li>DE Winterbone, Advanced thermodynamics for Engineers, Arnold, 1997.</li> <li>K. Annamalai, I. K. Puri, Advanced thermodynamics engineering, CRC Press, 2002.</li> <li>Ibrahim Dincer and Tahir Abdul HussainRatlamwala, Integrated Absorption Refrigeration<br/>Systems: Comparative Energy and Exergy Analyses, Springer</li> </ol>                                                                                                                                                                                                         |        |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| ME 617               | ADVANCED HEAT TRANSFERTHERMODYNAMICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3(3+0) |  |
| Pre-Requisite        | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |  |
| Course Outline       | An advanced study of the transmission of heat by conduction, convection and radiation.<br>Conduction and convection: derivation and application of their equations governing steady and<br>unsteady conduction heat transfer, transient conduction, and numerical solutions are examined<br>with selected topics. Governing equations for forced and natural convection; dimensional<br>analysis and similarity transforms.<br>Radiation: physical properties of radiation, thermal radiation laws, characteristics of real and<br>ideal systems, geometric shape factors, grey and non-grey system analysis, energy transfer in<br>absorbing media and luminous gases, |        |  |
|                      | 1. Amir Faghri, Yuwen Zhang, John R. Howell, Advanced Heat and Mass Transfe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ?r     |  |
| Recommended<br>Books |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |  |