
Future Generation Computer Systems 28 (2012) 337–349
Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A survey of dynamic replication strategies for improving data availability
in data grids

Tehmina Amjad ∗, Muhammad Sher, Ali Daud
Department of Computer Science and Software Engineering, International Islamic University, Islamabad, Pakistan

a r t i c l e i n f o

Article history:
Received 11 April 2011
Received in revised form
12 June 2011
Accepted 30 June 2011
Available online 23 July 2011

Keywords:
Data grid
Data replication
Dynamic replication techniques
Replication strategies

a b s t r a c t

Data grid is a distributed collection of storage and computational resources that are not boundedwithin a
geophysical location. It is a fast growing area of research and providing efficient data access andmaximum
data availability is a challenging task. To achieve this task, data is replicated to different sites. A number
of data replication techniques have been presented for data grids. All replication techniques address
some attributes like fault tolerance, scalability, improved bandwidth consumption, performance, storage
consumption, data access time etc. In this paper, different issues involved in data replication are identified
and different replication techniques are studied to find out which attributes are addressed in a given
technique andwhich are ignored. A tabular representation of all those parameters is presented to facilitate
the future comparison of dynamic replication techniques. The paper also includes some discussion about
future work in this direction by identifying some open research problems.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, in various scientific disciplines, large data sets are
becoming an important part of shared recourses. In many fields,
which are totally diverse in nature, like high energy physics,
bioinformatics, earth observations, global climate changes, image
processing, and data mining; the volume of data of interest is
measured in terabytes and some time in petabytes. Such an
enormous amount of data is accessed by the communities of
researchers and scientists by using sophisticated computational
devices. Both the researcher’s communities and the computing and
storage devices are geographically distributed around the globe.

This huge volume of data and the calculations involved
create new problems regarding the data access, processing and
distribution. With the large amount of data, different geographical
locations and complex computations involved, it becomes very
difficult tomeet the challenges of datamanagement infrastructure.
Data grid is a solution of all problems mentioned above. It is an
architecture for the distributed management and analysis of large
scientific datasets [1]. Data grid is an extension of the concept
‘‘Grid’’ which is an infrastructure for the integration of distributed
computing components.
Grid

In 1998 Kesselman and Foster introduced us to a definition of a
grid as follows

∗ Corresponding author.
E-mail addresses: tehminaamjad@iiu.edu.pk (T. Amjad), m.sher@iiu.edu.pk,

hdcs@iiu.edu.pk (M. Sher), ali.daud@iiu.edu.pk (A. Daud).

0167-739X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.06.009
‘‘A computational grid is a hardware and software infrastruc-
ture that provides dependable, consistent, pervasive, and inexpen-
sive access to high-end computational capabilities’’ [2].

Later in 2002 they improved the earlier definition to address the
social and policy issues in an article [3]. Finally in 2002 they further
improved the definition in [3] as follows

‘‘A system that coordinates resources that are not subject
to centralized control, using standard, open, general purpose
protocols and interfaces to deliver non-trivial qualities of services’’.

When we have to perform some complex computational ex-
periments which require high computational resources, we do not
need to install that computing infrastructure, rather we can sim-
ply become the part of a grid with high computational powers. The
idea of sharing the computing powers of the available resources
across the grid environment to perform some experiment, with-
out having to install additional computational resources is called
the Computational Grid.

On the other hand data grid is a type of grid which provides
services and infrastructure to assist the widely distributed data
intensive applications which require the access of huge amounts
of data. The basic services provided by data gird architecture are
storage systems, data access, and metadata services [4].

2. Motivation

In highly distributed environment of a grid, availability of data,
response time, access cost, bandwidth consumption, reliability,
scalability are some very important metrics to be considered.

http://dx.doi.org/10.1016/j.future.2011.06.009
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:tehminaamjad@iiu.edu.pk
mailto:m.sher@iiu.edu.pk
mailto:hdcs@iiu.edu.pk
mailto:ali.daud@iiu.edu.pk
http://dx.doi.org/10.1016/j.future.2011.06.009


338 T. Amjad et al. / Future Generation Computer Systems 28 (2012) 337–349
The motivation of this survey is to explore the existing dynamic
replication strategies so that the researchers can include all the
necessarymetrics in their works in this domain and the limitations
of the existing ones can be overcome.

3. Availability of data in data grids and replication

In a data grid system the computers are distributed across
several geographical locations. The issue is to provide maximum
availability of data to the users which are normally scientists from
different universities and research laboratories. The size of data
that needs to be accessed is in terabytes or petabytes. The efficient
access of such huge data which is widely distributed, is slowed
down due to network latencies and bandwidth problems. With
the growing size of a grid, the complexity of this infrastructure is
increasing. High availability of data is a major challenge in the grid
environment.

The computational applications have a tremendous amount of
data. Maintaining a local copy of data is very expensive and im-
practical. Therefore coping with high latencies of networks and
limitations of storage capacities at different sites for the provi-
sion of high availability of data is a difficult challenge. To meet the
challenge of high availability, data replication is considered to be
the major technique. It promotes high data availability, low band-
width consumption, increased fault tolerance and improved scal-
ability and response time [5–11]. When data is replicated, copies
of data files are created at many different places in the data grid.
Replication can save storage resources as compared to the stor-
age occupancy of data present at each site. It also saves a large
amount of bandwidth as compared to the condition that data is
present at only one site. Hence, for the provision of speedy data ac-
cess all the time, data replication is an excellent tradeoff between
storage availability and network bandwidth availability [12]. The
main idea is to keep the data close to the user in order to make
the access efficient and fast. The data replication algorithm has
to answer critical questions such as which data must be repli-
cated and where the replica must be placed. The dynamic behav-
ior of grid users makes it difficult to make decisions regarding
the data replications to attain the target of maximum availability
[13].

4. Classification of existing data replication techniques

Replication techniques can be classified into twomain streams,
static replication and dynamic replication. In a static replication
strategy, the number of replicas and the host node is chosen
statically at the start of the life cycle, no more replicas are
created or migrated after that [14,15]. On the other hand, dynamic
strategies adapt to changes in user request pattern, storage
capacity and bandwidth and can create replicas on new nodes and
can delete replicas that are no longer required depending upon
the global information of the data grid [6,12,16,17]. The dynamic
strategies are better than the static ones because they can make
intelligent decisions about the placement of data depending upon
the information of the grid environment. Simultaneously, there are
drawbacks as well; a replication decision center is required in a
data grid which needs to collect the runtime information of all the
nodes in a complex grid infrastructure. The overload of this central
decision center further increases if the nodes in a data grid enter
and quit frequently. In case of the decentralized approach, further
synchronization is involved making the task difficult. Hence, the
focus of this paper is only the dynamic replication strategies
keeping in mind that the static replication strategies, though very
simple to implement, are less useful.
5. Issues involved in data replication

Dynamic replication is an optimization techniquewhich aims to
reduce the average job execution time. It ensures high availability
of data, and improved usage of network bandwidth available.
There are certain issues which a data replication technique must
address during replication according to the constraints of a specific
situation:

Dynamic nature: The nature of the grid is very dynamic and
users can join and leave a grid at any time. So the number of
participants present in a grid at any given time can vary. The data
replication algorithm must be adaptive to the changing size of the
grid in order to provide better results.

Grid architecture: The replication technique is highly dependent
upon architecture of the grid. A data grid can be supported by
many different architectures. It can be a multi-tier architecture;
a tree like structure in which the nodes are arranged in a tree
like hierarchy. For example, the data grid of the GriPhyN project
in which tier 0 is the main data source (CERN), tier 1 contains
the national centers, tier 2 the regional centers, tier 3 the work
groups and finally at tier 4 are the desktops. Alternatively it can
be a graph like topology, in which any node can be connected to
any other node without any restrictions of tree topology. It can be
a peer to peer topology, or it can be any hybridmodel. A replication
technique is designed according to the architecture in question.

Decision making: Data replication involves a very critical deci-
sion, i.e. when to replicate data, which files should be replicated,
andwhere the replica should be placed. Depending on the answers,
different replication strategies have been evolved.

Available storage space: Although the storage devices have now
become very cheap, the replication strategies must still keep into
account the amount of available storage space before creating a
replica. In case the available storage is not sufficient enough to
store a replica, a replacement strategy is adopted.

Cost of replication: The replication strategymust ensure that the
benefit of the replication is higher than the cost of replication.

6. Dynamic replication techniques

We have divided the dynamic replication techniques into sev-
eral different categories according to their nature and architecture.
Work done in all those categories is discussed individually in this
section.

6.1. Techniques for peer to peer architecture and decentralized
decision making

Ranganathan et al. [8] have presented a DynamicModel-Driven
Replication strategy which proposes that data availability can be
improved in large peer to peer communities. In this approach the
peers can automatically produce the replicas in a decentralized
fashion whenever it is required to improve the availability of
data. So a threshold level of availability is always maintained.
In this model all the peers are independent to take replication
decision and they can create replicas of files they contain. Each
peer has a set of tools by which it can find out the state of the
system to take the replication decision. As the replication decision
is taken in a decentralized fashion so the state of information
is partial not accurate and there is a chance that two peers
can create replicas of same file simultaneously. The benefit of
decentralized decision is that there is no single point of failure. The
proposed replication strategy considers the following parameters:
(1) Average probability of a node being up. (2) The transfer time
to replicate data from one node to another node. (3) The storage
cost of file F at a given node. (4) The accuracy of replica location
method. The algorithm works in following steps:



T. Amjad et al. / Future Generation Computer Systems 28 (2012) 337–349 339
(1) Collect the above mentioned parameters.
(2) Using those parameters it finds out a required number of

replicas (r) for a file.
(3) Using a replica locator service finds out existing number

of replicas (M).
(4) If M > r wait and check again.
(5) IfM < r use a resource discovery procedure to find a host

for replica.
(6) Send replica to the selected remote host.

The target of this approach is to find an optimal number of
replicas and determine the best host for a new replica. The best
client is the one whichmaximizes the difference between cost and
benefit.

In the decentralized model for dynamic creation of replicas
there is always a chance that extra replicas may get created which
is waste of storage. The limitation of themodel is that an unlimited
amount of storage is assumed to be available, which is possible in
simulation but not in real life. Another overhead is to invoke the
replica location service again and again to check for replication.

Abdullah [18] presented a P2P model in 2008 for higher
availability, reliability, and scalability. They have developed their
own data grid simulator to test the proposed replication strategy,
taking response time, number of hops and average bandwidth
consumption as basic parameters for evaluation. In proposed
models all the peers operate independently within a peer group.
All peers working in a group agrees upon a common set of services.
Peers can join or leave a group at any time. When a peer joins
a group it can share the data of other peers, and its own data is
shared by others. A peer can be a member of more than one group
at a time. Peers can share the data sets with each other without
knowing from which peer they are getting the data. The process
of data discovery starts when a request is forwarded to all the
neighbors depending upon information stored in the routing table.
The nodes check the requested file and if not present forward it to
other nodes until its time-to live, and the simulator will keep track
of hop count. In this research they are studying four replication
strategies, out of which two are existing strategies: ‘‘requestor
node placement strategy’’ and ‘‘path node placement strategy’’,
and two are newly proposed in this research: ‘‘path and requestor
node placement strategy’’, and ‘‘N-hop distance node placement’’
strategy. In the ‘‘requestor node placement strategy’’ a required
file when found is replicated to the requestor node only. In the
‘‘path node placement strategy’’ the file is replicated to all the
nodes on thepath from requestor node to provider node. Thenewly
proposed strategy ‘‘path and requestor node placement strategy’’
is a combination of the first two strategies. In ‘‘N-hop distance
node placement’’ a file is replicated to all neighbors of provider
nodes within an n hop distance. The results of a simulation show
that new strategies have shown better performance than existing
ones in terms of performance, success rates and response time.
However, the proposed strategies use more bandwidth than the
existing strategies.

6.2. Techniques for multi-tier architecture and decentralized decision
making

Themultitier topology provides a very economical and efficient
way to share the storage, computational and the network
resources. It allows hundreds and thousands of users to share
the common resources efficiently. Ranganathan et al. [6] have
proposed six different replication techniques for three different
access patterns in 2001. The main aims are reduced access latency
and bandwidth consumption. The three access patterns considered
are (1) random, (2) some temporal locality and (3) some temporal
and geographical locality. They have presented and tested six
different replication strategies which are as follows:
1. No Replication: in this case only the root node contains the
replicas.

2. Best Client: a replica is created for the client who accesses the
file the most.

3. Cascading: a replica is created on the path of the best client.
4. Plain Caching: a local copy is stored upon initial request.
5. Caching plus Cascading: combines plain caching and cascading

strategies.
6. Fast Spread: file copies are stored at each node on the path to

the best client.

Using a simulation they have evaluated two parameters, the
response time and the bandwidth consumption. The results show
that the fast spread shows consistent performance for all the access
patterns. Cascading shows good resultswhen there is locality in the
access patterns. Although it is a client server type architecture, the
replica creation decision is not made at one central location. For
example in case of best client each node keeps a detailed record
of all the files it hosts, including the information of many times a
file has been requested and from which site the request has been
made. In such awaywhen a number of requests for a particular file
from a particular site increases, a threshold value from that site is
identified to be the best client and the node replicates the file to
the best client.

The virtuosity of the work done by Ranganathan et al. is
that the proposed six strategies have provided the base for the
new replication strategies until today. This work has provided a
very sound base for the future researchers. Many of the latter
researchers have compared the effectiveness of their proposed
techniques with the results of six strategies of Ranganathan et al..

On the other hand there are some limitations aswell. Due to the
dynamic nature of grid, the client that accesses a file formost of the
time, may not always keep on accessing the same file, i.e. the best
client may not always be the best client. In case of plain caching a
replica is created on initial request, and the initial request may be
the only request so there is no need for replication in certain cases.
In case of fast spread anunlimited amount of storage is required. All
these strategies are simulated under ideal circumstances which is
not possible in practice. The last limitation of the work is that read
only databases are considered.

In 2007 Yuan et al. [12] proposed a dynamic data replication
strategy based on the local optimization principle. They considered
the bottleneck of data grid storage capacity of different nodes
and bandwidth available between these nodes. The proposed data
replication strategy is based upon two important factors (1) the
storage capacity available at different nodes and (2) the bandwidth
available between different nodes. The idea is to achieve the global
data access optimization, first by achieving the local data access
optimization. In the model each node can perform the replication
locally, ensuring local optimization in the area it belongs to. This
strategy is a threshold based strategy because the replication
trigger condition is again a predefined value of data request
frequency. We call it a decentralized decision because first in a
decentralized manner local optimization is achieved in all local
areas and then through interaction of local optimizations, global
optimization is achieved. The problem has been addressed in two
parts.

(1) Basic Local Optimization (BLO): the users and developers of the
data grid are more concerned with the efficient data access
speed than the preservation of bandwidth, because it can
reduce the average job execution time therefore increasing the
job throughput. It improves the utilization of computational
resources, which is why BLO targets to speed up the average
data access by data migration. But in some cases BLO can
increase the bandwidth consumptionwhich is against the aims
of a data replication algorithm.



340 T. Amjad et al. / Future Generation Computer Systems 28 (2012) 337–349
(2) Reformative Local Optimization (RLO): in RLO they have
proposed to create a moderate number of replicas only on
the most important nodes in such a way that access latency
is minimized. This is done by considering both the storage
capacity of nodes and available bandwidth between nodes.

Their model provides reliability by identifying critical replicas.
Critical replicas are the ones which cannot be deleted because
they are the only copy available in whole grid. Such reliability is
very important in cases where there is a decentralized replication
decision environment.

Yuan’s model is again a tree structure because of its simplicity.
Tree structures are not very suitable in real grid environments
because their infrastructures are very dynamic in nature, and
nodes in grid can be added and deleted at any time.

Khanli et al. [19] proposed PHFS (predictive hierarchal fast
spread), which is a replication technique designed to decrease
the access latency of data access. This is an extension of fast
spread presented by Ranganthan et al. [6]. PHFS uses predictive
techniques to predict the future usage of files and then pre-
replicates them in hierarchal data grid on a path from source to
client. It works in two phases, in phase one it makes the file access
log files by collecting the access information from all over the
system. In the next phase it applies data mining techniques like
clustering and association rule mining to find useful knowledge
like clusters of files that are accessed together or most frequent
sequential access patterns. In this way PHFS finds the relationship
between the files for future predictions. The relationship of files
is assigned a value α which is between 0 and 1, 0 representing
no relationship between two files and 1, representing that the
two files are completely related. In this way the files are arranged
according to value of α, and this arrangement is called the PWS
(predictive working set). Therefore whenever a client requests a
file, PHFS finds the PWS of that file and replicates all members of
PWS alongwith the requested file on the path from source to client.
In thiswayPHFS tries to increase the locality in access bypredicting
the user’s succeeding file demands and pre-replicates them in the
hierarchalmethod in advance and achieves higher availabilitywith
optimized usage of storage resources.

It is noticed that the PHFS method is more suitable for the
applications in which the clients keep on working in the same
context for a long time period, and requests of clients are not
random. So it is more suitable for scientific applications in which
researchers are working on a project.

6.3. Techniques for multi-tier architecture, centralized decision
making and limited amount of storage

Tang et al. [20] in 2005 have presented two dynamic replication
algorithms, Simple BottomUp (SBU) and Aggregate BottomUp (ABU)
to reduce the average response time of data access. They have
developed a simulator called DRepSim for the evaluation of the
proposed algorithms. In the proposed architecture each node at
any middle tier provides resources to the lower tier nodes as a
server. To do so each node has a Local Replica Manger running on
it to manage replicas stored at local site. A replication decision
is made only at the Dynamic Replication Scheduler which keeps
information about the data access history and client access pattern.
Replica Catalog contains information about replicas including their
logical and physical file names for mapping. The Replica Selector
is available to choose one replica in case of multiple replicas
available. The job of SBU is to create a replica as close to the
client as possible, only for the client for which a request for
a certain file increases a threshold value. It only processes the
records individually in the access history and does not know their
relationship.While theABU’s job is to aggregate the history records
to the next upper tiers one by one till it reaches the root node. The
results of the simulation show that these two algorithms reduce
the data access time significantly when compared to the static
replication strategies. If ABU is compared with the fast Spread
strategy, ABU performs better as well. When SBU is compared
with fast Spread, fast spread’s response time is better but its
replication frequency is too high for real time applications. Fast
spread assumes an unlimited amount of storage space is available
at all nodes which is not the case in SBU and ABU. The possible
problemwith the two algorithms is that Least Recently Used (LRU)
is used as a file replacement strategy which may not be an optimal
file replacement strategy in some cases.

Shorfuzzman et al. [21] presented a dynamic replica placement
algorithm in 2008 for hierarchal data grid based on popularity of a
file, as strategic placement of replica is very important to improve
the availability of data and speed up the access. Their solution
is based upon the multi-tier hierarchal architecture presented
by Ranganathan [6]. They proposed the Popularity Based Replica
Placement (PBRP) algorithm which improves the access time by
dynamically creating the replicas of popular data. The popularity
of data is measured by keeping the record of access of that data.
It is assumed that popular files have more chances of access in
the future and the main emphasis is on finding the popular files.
The algorithm triggers at regular intervals, the history logs are
cleared at the start of each replication to capture the dynamics
of access patterns. As storage space is limited, they have used a
modified form of the LRU replacement strategy to ensure that the
replicas created in the current interval may not be deleted. This
replication process consists of two steps: one is ‘‘bottom up access
aggregation’’ in which they find out the access count of records
of all nodes, starting from leaves and aggregating towards the
roots along with the addition of all accesses, and the second is
‘‘top down replica placement’’ which traverses down the hierarchy
to find the access aggregate. If it’s more than a threshold value,
replication is done. The performance metrics evaluated are job
execution time, average bandwidth usage, and storage utilization.
They have compared the efficiency of their presented algorithm
with the replication policies given by Ranganathan [6], and have
shown that PBRP performs well. The job execution time of PBRP is
better than caching and best client. The bandwidth cost of caching
is better than PBRP. The storage cost charged by fast spread and
caching are too high, while PBRP is medium in terms of storage
cost. However best client and cascading are lower than PBRP.

Work done by Shorfuzzaman produces good results keeping
in account the job execution time, average bandwidth usage and
storage available. But still the disadvantages of simulating and
testing the proposed algorithm in a hierarchal network are present
here as well.

A very similar work was done by Chang et al. [22,23] in 2008, in
which they presented a dynamic replication algorithmusing access
weights. Shorfuzzaman has associated a popularity measure with
each file and Chang associates the access weight of each file to
keep track of the access history of all files. They have exploited
the concept of temporal locality. Temporal locality means that
the files which were popular in that past are more likely to be
accessed in the future as well. They proposed the ‘‘Latest Access
Largest Weight’’ (LALW) algorithm which finds out a popular file
for replication, the number of replicas and their locations. In the
proposed hierarchical architecture they consider each grid site as
a cluster. The cluster header is used to manage the information
within a cluster. All the cluster headers can communicate with
each other by sharing the information they have. In this way
they can find out which file needs to be replicated and where
to place the new replica. At a regular time interval, one cluster
header [22] gets file access information from all other cluster
heads. In [23] a central location the Dynamic Replication Policy



T. Amjad et al. / Future Generation Computer Systems 28 (2012) 337–349 341
maker performs this job. The information received at different
times has different weights to differentiate their importance. The
concept of half life is used to represent the weight of records.
The weight of records reduces to half of its previous value after
a fixed amount of time. LALW works in three steps: (1) find
the most popular file, (2) find how many replicas are required,
(3) choose host for new replica. It replicates the data at regular
time intervals by maintaining data access history which includes
file name, number of requests for that file, and the node requesting
that file according to their access weights are assigned to files and
popular files are selected for replication. The proposed strategy
has been tested in a simulator. They have compared their LALW
algorithm for its efficiencywith LFU. Both give similar resultswhen
total job execution time is measured. LALW performs better in
terms of effective network usage and storage usage, because LALW
replicates at regular intervals while LFU always replicates.

Perez et al. in 2010 [24] have presented a new model for
data replication in data grid environment. They have presented a
Branch Replication Scheme (BRS) which caters for the following
two metrics:

(1) optimal usage of the storage with the help of creating a sub-
replica and

(2) improved data access performancewith the help of parallel I/O
techniques.

BRS maintains the consistency of the replicas while updating.
The updating feature for the replicas is ignored by most of the
replication strategies as they assume that data is read only. BRS
provides improved scalability, performance and fault tolerance. In
theirmodel each replica is composed of disjoint sub-replicaswhich
are organized in a hierarchal manner. This approach guarantees
optimal storage consumption because only that part of file is
replicated to the site which is required and hence storage is not
occupied unnecessarily and parallel access to those sub-replicas
is made possible. They have evaluated the performance of their
model by running a simulation of 50 sites where each site has
several processors and 10 storage nodes which are connected
with a gigabit Ethernet. The BRS is compared with the Hierarchal
Replication Scheme (HRS) and BRS performs better than HRS for all
file sizes for both read and write operations.

In 2011 Sashi et al. [25] have presented a modified form
of Bandwidth Hierarchy Replication (BHR) [26] to overcome its
limitations. (BHRwas presented in 2004 by Park et al. and we have
discussed it in Section 5.10.) In the modified BHRmodel a network
region is defined as a network topological space where sites are
located closely. Whenever the required replica is present in the
same region, the job completion will be fast. The storage locations
for popular files are determined by considering the temporal and
geographical localities. If the required file is not present locally
than the Replica Optimizer algorithm looks for it in the nearby
sites of same region and proceeds to execute the job. Then it sorts
files in all storage elements (SE) inMost Frequently Accessed order
to find the SE which accesses the file for most of the time. If the
selected SE has enough space to hold this file, the file is replicated
to it. Otherwise it looks for a duplication of this replica in other
sites within the same region; if such duplications are present the
replica optimizer will be terminated. If no duplications are present
the replica optimizer will find the LRU file and checks that this file
is duplicated on any other site in the same region or not. If it is
present within same region and its access frequency is less than
the access frequency of new replica, then it is deleted from the
selected SE to make room for the replication of the new file. In this
way theModified BHR replicates the file within the regionwith the
condition that the replica is present in the site where it is accessed
for most of the time.

They have compared Modified BHR with No Replication, LRU,
LFU, and BHR with two different access patterns using optorsim.
Results show that access cost is reducedwith improved availability
and optimized use of storage space by using Modified BHR. They
have used LFU for the replica replacement policy and other replica
replacement policies can also be used and investigated to make
further improvements.

6.4. Techniques for hybrid architecture, decentralized decision mak-
ing and limited amount of storage

Lamehamedi et al. [7] studied the replication problem in 2002
and presented a set of replica management services and protocols
to offer high data availability, low bandwidth consumption,
improved fault tolerance, and scalability of the system. In their
approach replication is considered to balance the load of data
requests within the system to improve reliability. The replication
decision is based on access cost and replication gains and is done by
the replicamanagement system. The hybrid architecture combines
the ring topology and the tree structure to get the benefits of both
models. The multi-tier architecture increases the availability of
data and the ring topology between the root nodes of multiple
hierarchal structures improves scalability. All the entities in the
data grid keep a replica set, which is empty initially. Then the
replication process starts and creates replicas at the nodes which
receive a larger number of requests. In the hierarchical topology,
each node maintains a list of its parent and child locations, while
in the flat topology; each replica keeps a list of the locations of its
neighbors. A replica is removed from a site when the user chooses
to do so. Otherwise, the system can delete a replica in following
three scenarios:

(1) If a replica is not required locally any longer or,
(2) If there are no requests to access it remotely from other sites

after a certain amount of time or,
(3) When space is required tomake room formore frequently used

data.

For their experiments they have introduced additional traffic on
the grid which utilizes bandwidth and introduces extra delays so
that the results are close to the original scenarios. The simulation
results show that the performance gains increase with size of data.

To generate their results they have assumed that requests
are made sequentially and each user accesses only one file. This
assumption is far away from an original scenario. Although their
results show potential, they are based on synthetic workloads and
simplified grid scenarios so the introduced services and protocols
must be tried and tested on original scenarios.

6.5. Techniques for multi-tier sibling tree architecture, centralized
decision making and limited amount of storage

In 2009 Rasool et al. [27] proposed a two way replication
strategy. The multi-tier sibling tree architecture is used which is
a mixture of the architectures presented by Ranganathan [6] and
Lin [28]. It’s a hierarchical model in which all the siblings are
connected to each other as well. In this two way replication (TWR)
scheme themost popular data is identified and placed to its proper
host in a bottom up manner in this way they are closer to the
clients. In top down manner the less popular files are identified
and are placed to one tier below the root node, in this way they
are close to the roots. Replication is done in a centralized way by
the grid Replication Scheduler (GRS). GRS has communicationwith
the replica catalog which administers all the information about
the replicas. GRS also communicates with Replica Selector in order
to choose the best replica server. The request path is defined as
follows. A client requests a file not present in its cache from its
parent, if it is present on the parent it is transferred to the client.
If the file is not present at parent node, it is searched for in the
sibling ring. The siblings are connected just like P2P topology. If



342 T. Amjad et al. / Future Generation Computer Systems 28 (2012) 337–349
the requested file is present in the sibling ring it is transferred
to the client, otherwise it is forwarded to the parent and so on.
The GRS finds out the average access frequency of the file with
the help of history records. These files having a greater frequency
than this average value are called More Frequent Files MFF, and
files with less are called Less Frequent Files LFF. The replication of
MFF and LFF is done concurrently. In both cases the replicas are
placed on the path of the best client. Replica selection is done by
using the closest policy which tries to provide the data from the
nearest site. A replica replacement policy is required, as a limited
amount of storage is assumed. The function evacuate is used for
replica replacement. It finds the replicas that have not been used
in the current session and removes them until there is enough
space for a new replica. They have tested the proposed strategies
using a simulator and compared the results with the Fast Spread
replication technique [6]. Results show that TWR is better than the
fast spread in terms of number of replicas and better utilization of
storage elements, while its response time and availability of data
is comparable to fast spread. The drawback of the research is that
it’s only considering the homogeneous data grid nodes and cannot
be applied to heterogeneous nodes while the nodes in a data grid
are normally heterogeneous.

6.6. Techniques for multi-tier sibling tree architecture, decentralized
decision making and limited amount of storage

Lamehamedi et al. [16] attempted to meet the challenges of
huge data distribution and network latencies by using dynamic
replication in 2003. They presented an approach where a replica
creation decision is based on the estimation of cost, data access
gains, replica creation cost and replica maintenance cost. These
costs are calculated from the cost of read/write operations,
bandwidth, and network latency. Scalability is provided in the
proposed approach by the use of distribution topologies that can
support replica placement. In this way, services can be provided to
a large number of users. Keeping in view the dynamic nature of the
grid, the authors have mainly addressed two challenging features;
(1) scalability, (2) adaptability. In the proposed approach the
replication component calculates the improvement in data access
gained by replication and compares it to the cost of replica creation
and maintenance at run time to decide whether replication must
be performed or not. To provide scalability multi-tier sibling tree
architecture is used. In this way the hierarchy is provided by tiers
of the hierarchal model and all the siblings are connected via
ring topology to provide even more connectivity and scalability.
A simulation is developed to evaluate the proposed model. It
is a decentralized approach as the replica management entity
decides to create a local replica. Parameters which are considered
before creating and placing a replica are the access patterns, free
storage available at a given node, and estimated cost. So the
strategy finds out an optimal solution by comparing the costs
and benefits of replication. For experimentation they have done
simulation for three different scenarios. The results show around
60% of improvement in response time and data transfer time. Data
transfer costs and bandwidth consumption are reduced aswell. It is
noticed that the performance of highwork load scenarios increases
when high bandwidth is provided.

The results of Lamehamedi et al. are very promising but the
problem is that the results are compared to the case when no
replication was performed. The proposed model is not compared
with any other existing replication technique, which is a problem
because we cannot conclude how good or bad this replication
strategy is.

6.7. Techniques for multi-tier architecture to ensure a balanced
workload

In 2006 Liu et al. [29] have presented efficient algorithms
keeping in view some very important parameters. They tried
to maintain a balanced workload on all the servers by optimal
placement of replicas. For ensuring efficient data access as well as
cheaper maintenance of replicas they have proposed an optimal
number of replicas. They have emphasized the fact that strategic
data placement is very important in order to getmaximumbenefits
from replication. Optimizing the access cost and reducing the
replication costs are two opposites and it’s difficult to find a
balance between them. To achieve this task a hierarchal model is
presented where the request initiated by a user is routed upward
as long as the required data is found. Assume that
• T is the tree representing data grid and r is the root.
• L is set of all leaves and l is a leaf node, then w(l) is the amount

of data requests from l.
• N is a set of nodes in T .

Then the workload of a node n can recursively be defined as

fR(n) =


w(n) if n is a leaf−

cfR(c) where c is a child of n and c
does not belongs to R.

Now the problem is divided into two parts MinMaxLoad and
FindR. InMinMaxLoad the number of replicas is given and we have
to find R in such a way that maximum workload is minimized. In
FindR problem the amount of data, a replica or a hub can provide
is given as input to the problem and we have to find R so that
the workload is not more than the given workload. So the input
parameters are an estimated amount of data usage from each user
site and maximum workload allowed for each replica server. The
time complexity to compute workload is O(n) when no replica is
place. Cost of updating theworkload of ancestor isΩ(kn). As cost of
updates is high and not prohibitive so they have proposed an idea
of Lazy Update in their baseline algorithm called feasible. The idea
of Lazy update is to use a deduction value on an internal node n to
keep track of amount of workload that should be removed from n
and all of its ancestors. It is a depth first traversal. Using Lazy update
they find an optimal replica set for FindR in time O(n log n) where
n is the number of nodes in the data grid. BinSearch finds optimal
replica set for MinMaxLoadin cost O(n log n). So in this way both
algorithms work in tile O(n log n).

They have presented the algorithms but have not tested them in
a real environment or in a simulator. The limitation of the strategy
is that it can only workwell with the tree topology and cannot give
results if applied to a general graph topology.

Later in 2008 Wu et al. [30] extended the work of Liu [29].
Wu involves the issue of quality assurance in the previous work;
now in their model each request must be given a quality of
service guarantee. Their new algorithms ensure both workload
balance and quality of service. They presented two models, The
Unconstrained Model and Constrained Model. The algorithms of
Unconstrained model are same as their previous work [29], and
the Constrainedmodel involves a range limit with each request for
locality assurance. That means that the request must be served by
a replica or hub within a fixed number of hops towards root.

In both proposals by Liu and Wu [29,30] they have assumed
the hierarchical structures for their models, so the solution cannot
work for the general graphs which are more close to a real
grid environment. The problem of network congestion is not
considered as all the requests if not served by intermediate nodes
are finally directed towards the hub. In their later work the
constraint of locality had not only made the work more difficult
but had also decreased the availability.

6.8. Techniques for multi-tier sibling tree architecture to ensure a
balanced workload

In 2008 Lin et al. [28] have addressed the problem of placement
of a new replica in a proper place by considering a priority list. Their



T. Amjad et al. / Future Generation Computer Systems 28 (2012) 337–349 343
work is done in the prospective that the userwho is requesting data
may have different levels or types of authorization for accessing
the resources. Majorly they have addressed two issues (1) some
users may have a limited or no access to some data resources, so
their requests must be prohibited from accessing such data, and
(2)with some special requirements for example quality of services,
a static policy may not satisfy a data request. The proposed replica
placement algorithm which finds a suitable host for the replica in
such away thatworkload among the replicas is balanced. They also
proposed an algorithm which finds out the minimum number of
replicas when the maximum workload capacity of each replica is
given. The hierarchal model is different from other related works
done considering hierarchal model because they assume a logical
connection between all siblings of a parent and a request can
be served from a node present in sibling ring. If requested data
is not present in sibling ring than parent ring is searched. This
architecture is called a Sibling Tree model, which is an extension
of a normal tree structure. In the proposed priority list model, each
node in the data grid can request data, and each request uses a
priority list which indicates the sites from which the request can
ask for the required data. The replica placement problem is been
divided into two parts:

(1) LoadBalance: with given k number of replica find a feasible
server set S containing k servers in such a way that maximum
workload among all the servers is minimized. The complexity
of this algorithm is O(N3(logM)), where N is number of nodes
in data grid and M is the number of requests.

(2) PlaceR: with given W maximum workload of each server, find
theminimumnumber of servers in server set S. The complexity
of this algorithm is O(N3) where N is the number of nodes in
the data grid.

The presented hierarchal model assumes a logical connection
between the siblings and actually all connections from one sibling
to another physically involves the parent i.e. atmost two hops. This
means the actual time taken to serve a request is infect more than
it is presented, as this logical connection is assumed physical and
already the time complexity is too high. The problem of network
congestion is not considered as all the requests if not served by
intermediate nodes are finally directed towards the root.

6.9. Techniques for single-tier architecture to minimize data missed

Lei et al. [31,32] proposed a dynamic data replication strategy to
handle the problem of maximizing the availability of data in data
grid. Theyhave presented twonewmetrics, System FileMissing Rate
SMFR and System Byte Missing Rate SBMR, assuming limited replica
storage space for maximizing data availability by minimizing the
data missed rate. They presented a greedy algorithm that treats
hot data differently than cold data for assigning of weight-age to
files for replacement. Hot data is the data that is being used more
frequently. The emphasis is that availability of the whole system
is of more importance than the availability of a single file and
correctness of available data is of high importance too. SMFR is
the ratio of number of file that may not be available to the total
number of requested files by all jobs. Likewise SBMR is the ratio
of the bytes that may not be available to the total number of bytes
requested by all jobs. The MinDmr optimizer takes four steps to
perform replication. It first checks that requested file is present in
Storage element or if, if it is present then of course no replication is
performed. If requested file is not present then optimizer checks
free storage space available, if its large enough requested file is
replicated. Thirdly if there is not enough space available optimizer
has to select file or files to be removed to make enough room for
new file depending upon their weights. Finally, it has to guarantee
that replication gain is more than replacement loss. The proposed
strategy is for single tier architecture and thus it can be used in a
single tier of multi-tier grid architecture.

The strategy adopted by Lei is performing well, but it is based
upon an assumption that all the file sizes in the system are same
and that’s why SFMR and SBMR are same. There must be some
enhancement in the algorithm so that system filesmissing rate and
system bytes missing rate in the grid can be differentiated when
the file size is not unique. Furthermore, the smaller sized filesmust
be given preference above larger files when file sizes vary.

6.10. Techniques for general grid topology and limited amount of
storage

In 2004 [26] Park et al. proposed an internet hierarchy based
replication strategy called BHR to reduce the data access time by
avoiding network congestions. To achieve this, they are exploiting
the concept of network level locality. In proposed model there
can be different network regions combined with each other. If a
required file is present within a region there will be less number
of routers in path, but if the file has to be fetched across the region
from another region, there will be more number of routes in the
path. With in a region there will be broad bandwidth available.
Network level locality means that if the required file is fetched
from the site having broad bandwidth, it will reduce the response
time significantly. BHR tries to improve the network level locality
by replicating the files within the region. The region optimizer
keeps the count of files that are accessed within the region to find
the regional popularity of files. If the required file is not present
within the site, it is fetched fromany other site and after processing
it is decided whether to replicate this file or not. If the local storage
element has enough space the file is stored. If the available space
is not enough the decision of removing existing files to make room
for new files is taken in two steps. First it is checked that required
new replica is duplicated on another site within region, file is not
stored. Otherwise Optimizerwill find out such files on local storage
which are present onother siteswithin region. Anyof such fileswill
be deleted to make enough room for new file. Secondly all files in
the storage element are sorted in least frequently used order. All
files having access frequency less than access frequency of new
file are deleted until there is enough space for new replica, and
finally the new replica is stored. First step ensures the duplication
is avoided, and second step considers the popularity of a file on
regional level. This increases the network locality. The results of
simulation of BHR are compared with LRU delete strategy and
Delete Oldest strategy. It is shown that BHR takes the shorter
total job time specially when small storage is available and the
bandwidth hierarchy is clear.

BHR takes advantage of network level locality, i.e. the required
file is present in a site that has a large amount of bandwidth
available between it and the sitewhere job is executed. However in
data grid environment the files may not be present in the nearby
locations with high bandwidth. So less time will be consumed in
fetching the required file only if file is present in same region.

Ding et al. proposed Data Placement algorithm and Self tuning
data replication algorithm in 2009 for general grid topology
in [33] for improved load balancing, reduced response time
and conserved network bandwidth. In proposed model grid is
composed of clusters, with each cluster having different storage
and computational capabilities. The system model has following
main components: (1) Global Data Scheduler to replicate and
distribute new data objects, (2) Global computational Scheduler
to dispatch jobs to different cluster sites, (3) Local computational
Scheduler to dispatch jobs locally and (4) Local Data Scheduler to
delete, create, and transfer replicas. The Data placement algorithm
is proposed for Global data scheduler, and data replication
algorithm is proposed for local data scheduler. When new data



344 T. Amjad et al. / Future Generation Computer Systems 28 (2012) 337–349
objects are created they are placed in data grid and their replicas
are allocated to selected sites by Data placement algorithm. This is
done by keeping the workload balanced and considering the size
of storage available. As the resources in the cluster sites and data
access patterns keeps on changing so a self tuning data replication
algorithm is proposed to automatically adjust such changes. The
Local data scheduler finds out the heavily loaded site and pairs
it with a lightly loaded side using pair establish protocol. After
this pairing some of the replicas are shifted to lightly loaded site
and load is balanced again. The simulation results have shown
that new data placement algorithm shoes better results than the
general data placement algorithms. The new replication algorithm
outperforms the general threshold based algorithms in terms of
efficiency and load balancing.

6.11. Techniques for general graph architecture, decentralized deci-
sion making

Most of the work done in field of replication in data grid
environment is considering the multi-tier (hierarchical) grid
architecture. In literature we have found comparatively very less
amount of work which is considering a general or planner graph as
grid architecture.

In 2005 Rehman et al. [9] presented six dynamic replication
strategies based on utility and risk for two different kinds of
access patterns. Before placing a replica at a site they considered
both utility and risk index for each site according to the current
network load and user requests. A site with optimized utility and
risk index is than chosen for replication. They have used Graph as
architecture to represent a data grid, which is closer to the real life
grid scenario than a typical hierarchal architecture. Their model
uses average response time a basis for comparison among various
replication strategies. The best replication strategy has lower
response time. The algorithms proposed based on utility select a
replica site assuming that the future requests and current loads
and user requests. Algorithms proposed based on risk index expose
sites far from all other sites and assume a worst case whereby
future requests will primarily originate from here. The replication
algorithm selects one site per iteration to host a replica. The
replication strategies are based on distributed and decentralized
model and as they are dynamic so they can adapt changes to both
user and network behavior.

In 2007 Rehman et al. [34] took their work further and argued
that due to the dynamic nature of grid environment the candidate
sites that hold data may not always be the best site to hold
that replica. So they proposed a replica maintenance algorithm
which can relocate the replica if performance degrades. They have
considered both network state and file requests before placing
a replica to a site. They have extended their previous work by
locatingmore than one candidate sites at the same time rather than
one site per iteration.

The results in [9,34] are very promising and representing the
real grid scenario. Someassumptions consideredduring simulation
are not like a real grid environment. The number of sites is fixed
in the simulation and the connection between sites does not
drop throughout the simulation. Whereas actually nature of grid
is dynamic, sites can join and quit frequently. Thus, the replica
placement algorithm must be capable of taking care of the drop
connection between sites.

Bsoul et al. [35] in 2010havepresented anEnhanced Fast Spread
replication technique for data grid. EFS consider the number and
frequency of requests, size of replica and last time the replica
was requested while making the replication decision. They have
considered a network topology (which is a complete graph) in
which there is one server node and many clients. The server node
has the main storage with all the data and the clients have less
storage space available as compared to the server. Whenever a file
is required it is first searched locally, and is used if found. If it is
not available then the client traverses the shortest path until it
finds the required file. The fast spread strategy replicates the file
on all nodes along the path. If storage on any node is not enough
if remove some file(s) to make room for new replica using LRU or
LFU. The EFS, on the other hand considers the value of the group
of files to be removed with the value of new replica. It replicates
the new replica only if value of new replica is greater than value
of group to be removed. The replica value (RV) and group value
(GV) are calculated from the factors like number of requests, size
of replicas and last time it was requested. During the simulation
EFS has been compared with Fast Spread with LRU and Fast Spread
with LFU under three different scenarios mentioned as under.

• Probability of requesting any of the replicas is same.
• Probability of replicas in most wanted group (MWG) is 30% and

rest of replicas is 70%.
• Probability of both, the MWG and rest of replicas is 50%.

The parameters considered for evaluation of performance are
the total response time and total bandwidth consumption. The
simulation results show that EFS performs better than the original
fast spread.

Another Dynamic Replication Algorithm (DRA) [36] was
proposed by Sashi et al. in 2010 for European DataGrid. It considers
a network topology in which different clusters are present. Within
a cluster the sites are located closely. DRA improves the availability
of a file by replicating it within a cluster. The data is initially
produced in cluster master and it is than distributed to all cluster
heads. Access frequency of all the files is determined and most
popular files are replicated to the site where it is requested for
most of the times, considering the geographical and temporal
localities. The metrices used for evaluation of performance of DRA
are Mean Job Execution time (MJET) and Average Storage Used.
During simulation they have compared DRA with No Replication,
LRU and LFU and it is observed that performance of DRA is better.

In both EFS [35] andDRA [36] the comparison is beenmadewith
vary basic strategies like LFU and LRU.We can see from this survey
that a number of advanced strategies for dynamic replication
have been emerged, but none of them is used for comparison.
Experimentation is required to test those new strategieswith other
known good ones instead of simple LRU and LFU.

6.12. QoS aware data replication

Andronikou et al. [37] have presented a QoS aware data repli-
cation mechanism containing set of algorithms for the complete
replication life cycle, including replica creation, placement, reloca-
tion and retirement. These algorithms consider the infrastructural
constraints like locality, cost, network and bandwidth etc. and the
importance of data as well. The focus of the solutions is on deter-
mining the number and locations of the replicas to be created or
deleted, considering the workload balancing on all nodes, QoS sat-
isfaction and improved usage of available network bandwidth.

First of all the QoS determination mechanism of replica
management identifies the important data. Higher the importance
of data, more replicas are to be created. The number of replicas
to be created is then identified according to importance and
storage available. Once the number of replicas is identified,
replica management has to identify where to place them. The
process involves selection of best storage node. Replica relocation
mechanism is involved to cope with the dynamic environment of
data gridwith great flux of retrieval requests. Relocation algorithm
find the best location for existing replicas according to the current
user request patterns. As replication is very capacity consuming
technique, so replica retirement mechanism is also presented. The
replicas that are no longer are in used are deleted, ensuring that
at least one copy always remains in the system, hence providing
reliability and securing the storage space for more important data.



T. Amjad et al. / Future Generation Computer Systems 28 (2012) 337–349 345
7. Feature comparison and its tabular representation

Nowwe are going to summarize all the techniques discussed in
Section 5 in such a way that we can identify the following:
1. What are different promises of a replication strategy?
2. What are different parameters a replication technique may

consider to meet the promises?
3. What different models or architectures are available, and pros

and cons?
4. What different assumptions are made?
5. What different research methods are used?

7.1. Benefits of data replication strategies

Availability: All the replication strategies aim to provide maxi-
mum availability. Rather, it would be better to say that replication
is the only way to improve availability of data: generally in all dis-
tributed database environments and specifically in data grids.

Reliability: When replication increases the availability, the
reliability is improved as well. The more the number of replicas
more is the chance that user’s request will be serviced properly,
and hence systems is more reliable.

Scalability: It is another important metric that must be
considered by a replication algorithm. The extent to which
scalability can be provided depends upon the architecture chosen
for the data grid. Different architectural models support different
levels of scalability. That means, scalability is more dependent on
model than replication algorithm.

Adaptability: This is a very important parameter which must
be provided by a replication strategy. The nature of the grid is
very dynamic. Nodes keep on entering and leaving the grid very
frequently. The replication algorithm must be adaptive to provide
support to all nodes present in a data grid at any given time.

Performance: As the availability of data increases the perfor-
mance of the data grid environment increases.

7.2. Different parameters and their importance

To gain the above mentioned benefits there is a set of parame-
ters. All replication strategies use any subset of these parameters.
• Reduced access latency.
• Reduced bandwidth consumption.
• Balanced workload.
• Less maintenance cost.
• Strategic replica placement.
• Job execution time.
• Increased fault tolerance.
• Quality assurance.

Almost all the replications strategies try to reduce the access
latency thus reducing the job response time and hence increase the
performance of the data grids. Similarly almost all the replication
strategies try to reduce the bandwidth consumption to improve
the availability of data and performance of the system. The target
is to keep the data as close to user as possible, so that data
can be accessed efficiently. Some of the replication strategies
explicitly target to provide a balanced workload on all the data
servers. This helps in increasing the performance of the system and
provides better response time. With more number of replicas in a
system the cost of maintaining them becomes an overhead for
the system. Some of the strategies aim to make only an optimal
number of replicas in the data grid. This ensures that the storage is
utilized in an optimal way and the cost of replica maintenance is
minimized. Some strategies target the strategic placement of the
replicas along with an optimal number of replicas. The strategic
placement of replicas is a very important factor because it is
integrated with few other very important factors. For example, if
the replicas are placed on the optimal locations it helps to optimize
the workload of different servers. It is also related with the
Fig. 1. Multi-tier architecture.

maintenance of the cost. If a strategy goes on replicating a popular
file blindly, itwill created toomany replicas thus increasing burden
for the system as replica maintenance costs will become too high.

Job execution time is another very important parameter. Some
replication strategies target to minimize the job execution time
with optimal replica placement. Idea is to place the replicas closer
to the users in order to minimize the response time, and thus job
execution time. This will increase the throughput of the system.

Only a few replication strategies have considered replication as
an option to provide fault tolerance and quality assurance.

7.3. Different architectures for data grids

The performance of replication strategies is highly dependent
upon the underlying architecture of data grid. Different architec-
tural models have been proposed. The very basic model is the hi-
erarchal data model, also known as multi-tier, as envisioned by
the GriPhyN project. It is a five tier hierarchal structure (shown in
Fig. 1). Tier 0 is CERNwhere all the data is produced; at tier 1 there
are the national centers; at tier 2 the regional centers are present;
at tier 3 the work groups are present and finally at tier 4 are the
desktops. In 2001 Ranganathan and Foster [6] presented six repli-
cation techniques for this architecture of the GriPhyN project. This
is a form of client–server architecture and is easier to implement
because of its simplicity. The problemwith this type of architecture
is the strict rules of a tree structure; there is only one path avail-
able from a leaf to the root. Child nodes can communicate only to
their direct parent and cannot communicate with any other node.
This type ofmodel is efficient only for the grids which are designed
from scratch. If we are randomly adding nodes to the grid then this
type of architecture fails to represent the grid.

Latter researchers have used this work as a basis and proposed
many replication strategies for this hierarchal model, and for
certain modifications of this model as well. The sibling tree model
shown in Fig. 2 is a modification of this hierarchal model in which
the sibling nodes are also connected. This improves some of the
limitations of the hierarchal grid.

A true representation of a grid is a general graph in which there
is no central node designated as a root node, and any node can
be connected with any number of nodes. In literature we can see
the work done on a graph as the grid architecture is much less.
Most researchers have worked on hierarchal structure and have
mentioned extending their work to general graphs in the future.

7.4. Different assumptions

Few earlier replication strategies have assumed that there is
an unlimited amount of storage space available for placing new
replicas. Recent work assumes that storage space, though very



346 T. Amjad et al. / Future Generation Computer Systems 28 (2012) 337–349
Table 1a
Features of replication techniques studied in the survey.

Reference # [8] [18] [6] [12] [20] [21] [22,23] [7]

Year 2002 2008 2001 2007 2005 2008 2008 2002
Replication decision Decentralized Decentralized Decentralized Decentralized Centralized Centralized Centralized Decentralized
Architecture P2P P2P Multi-tier Multi-tier Multi-tier Multi-tier Multi-tier Hybrid
Improved availability Yes Yes Yes Yes Yes Yes Yes Yes
Reduced response
time

Yes Yes Yes Yes Yes Yes Yes Yes

Scalability No Yes No No No No No Yes
Reliability No Yes Yes Yes No No No No
Bandwidth
consumption
consideration

No Yes Yes Yes Yes No Yes Yes

Load balancing
consideration

No No Yes No No No No No

Fault tolerance
consideration

No No No No No No No Yes

Storage assumption Unlimited
storage

Limited Limited Limited Limited Limited Limited Limited

Storage utilization Increased due to
duplication

Increased Increased Improved Improved Improved Improved Increased

Reduced access cost No No No No No Yes No Yes
Simulation Yes Yes Yes No Yes Yes Yes Yes
Complexity O(n2) O(n2)

Threshold based Yes No Yes Yes Yes Yes Yes Yes
Optimal number of
replicas

Yes No No Yes No No No No

Replication cost
consideration

Yes No No No Yes Yes No Yes

Any additional
features

No Number of
hops

3 access
patterns

Local
optimization

Different
access
patterns

Strategic
placement &
different access
patterns

No Size of
replica
Fig. 2. The sibling tree architecture.

cheap, is limited. Some strategies assume that all the files are of
same size, some assume that all sites have equal amount of storage
space and equal computational powers. Another assumptionmade
by some strategies is that the network connection between
different nodes does not drop throughout the simulation. All
those assumptions have a potential impact on the working of the
grid environment. The more unrealistic the assumption, the less
efficient the strategy in real life scenarios.

7.5. Research methods used

Almost all the work done in the field of replication is validated
by the simulation. OptorSim was developed as part of the EDG
[38–41] project. It is the most commonly used simulator for the
evaluation of proposed replication strategies. Network Simulator
NS has also been used. Some strategies have written their own
simulators like DRepSim is created in [20] and GridNet in [16]
which is also used by [27].
7.6. Features of replication strategies

The Tables 1a–1c show a summarized form of features of all
research strategies studied above. In this section we compare the
reviewed replication techniques according to their features.

The grid architecture for which the replication technique
is developed makes the strategies different from one another.
Four main different architectures are found, Peer-to-Peer, Multi-
tier, Sibling Tree, and General Graph. The replication decision
making authority is an important feature. Decision making can be
centralized or distributed. In centralized decision making there is
a chance of bottleneck in case of more than an average load on the
network. In decentralized decision making there is a chance of of
duplication and unnecessary replication. Almost all the replication
strategies are found to improve the availability of data and reduce
the response time. There are no differences in these two features.
Scalability of a system is mostly dependent upon the architecture
on which the system is based. Some architectures provide more
flexibility and some are less flexible. The reliability of the system
involves the correctness of available data. Reliability is sometimes
measured with time when the system is up, i.e. reducing the
downtime of the system improves the reliability. There is an
optimal consumption of bandwidth by some of the replication
strategies, although it is not considered by many replication
strategies because in data replication themain target is to improve
the availability of data. This improved availability can sometimes
be at the cost of more bandwidth consumption than average.
Load balancing and fault tolerance are supported by only a few
replication strategies and are not considered as an important
feature in most of the work done. The amount of storage space
assumed by a replication strategy is a very important feature.
Few earlier replication strategies have assumed that there is an
unlimited amount of storage available, and as many replicas can
be created as required. Although the storage cost is becoming
reasonably low these days, to ensure realism a strategy must still
assume a fixed amount of storage. Such strategies also use a file



T. Amjad et al. / Future Generation Computer Systems 28 (2012) 337–349 347
Table 1b
Features of replication techniques studied in the survey.

Reference # [27] [16] [29] [30] [28] [31,32] [26] [33]

Year 2009 2003 2006 2008 2008 2006, 2008 2004 2009
Replication decision Centralized Decentralized Centralized Centralized Centralized Decentralized Decentralized Centralized
Architecture Sibling tree Sibling tree Multi-tier Multi-tier Sibling tree Graph General General
Improved availability Yes Yes Yes Yes Yes Yes Yes Yes
Reduced response
time

Yes Yes No No No Yes Yes Yes

Scalability No Yes No No No No No No
Reliability No No No No No No No No
Bandwidth
consumption
consideration

No Yes No No No Yes Yes Yes

Load balancing
consideration

No No Yes Yes Yes No No Yes

Fault tolerance
consideration

No No No No No No No No

Storage assumption Limited Limited Limited Limited Limited Limited Limited Limited
Storage utilization Improved Improved Improved Improved Improved Improved Improved Improved
Reduced access cost No Yes Yes Yes Yes Yes Yes No
Simulation Yes Yes No Yes No Yes Yes Yes
Complexity O(n log n) O(LN log2 N) O(N3),O(N3(logM)) O(n log n)
Threshold based Yes Yes n/a n/a n/a Yes Yes Yes
Optimal number of
replicas

Yes No Yes Yes Yes No No No

Replication cost
consideration

No Yes Yes Yes Yes No Yes Yes

Any additional
features

Relocation
of replicas

Strategic
placement and
replica size

Strategic
placement of
replica

Quality
assurance and
locality
assurance

Strategic placement
of replicas

Minimize
data missed
rate

Reduced
network
congestion

Self tuning
data
replication
Table 1c
Features of replication techniques studied in the survey.

Reference # [9] [34] [24] [25] [35] [36] [19] [37]

Year 2005 2008 2010 2011 2010 2010 2011 2011
Replication decision Decentralized Decentralized Centralized Centralized Centralized Decentralized Decentralized Centralized
Architecture Graph Graph Multi-tier Multi-tier Graph Graph Multi-tier Not

mentioned
Improved availability Yes Yes Yes Yes Yes Yes Yes Yes
Reduced response
time

Yes Yes Yes No Yes Yes Yes No

Scalability Yes Yes Yes No No No No No
Reliability Yes Yes No No No No No Yes
Bandwidth
consumption
consideration

Yes Yes No Yes Yes Yes Yes Yes

Load balancing
consideration

Yes Yes No No No No No Yes

Fault tolerance
consideration

Yes Yes Yes No No No No No

Storage assumption Unlimited Unlimited Limited Limited Limited Limited Limited Limited
Storage utilization Average Improved Optimal Optimal Optimal Optimal Average Optimal
Reduced access cost Yes Yes No Yes No No Yes Yes
Simulation Yes Yes Yes Yes Yes Yes Yes Yes
Complexity O(k log k)
Threshold based Yes Yes Yes Yes Yes Yes Yes Yes
Optimal number of
replicas

No No Yes Yes Yes Yes No Yes

Replication cost
consideration

No No Yes Yes Yes Yes No Yes

Any additional
features

Two different
access patterns

Relocation of
replicas

Parallel I/O
techniques

Different
access
patterns

Three different
scenarios
considered

Mean job
execution time

Reduced
access latency

Importance
of data set
replacement mechanism. Selection of a suitable file replacement
algorithm affects the overall system performance. The optimal
use of storage space is ensured by some strategies by making an
optimal number of replicas, avoiding the unnecessary duplication
which is of course beneficial. The cost of replication must be
considered to ensure better output froma system. Simulation is the
only research methodology used by almost all research strategies
to evaluate, and validate the proposed strategies, and to compare
them with existing strategies.

8. Conclusion and future research

We have presented a survey and classification of dynamic
replication strategies for a data grid environment. It can be seen



348 T. Amjad et al. / Future Generation Computer Systems 28 (2012) 337–349
that different strategies have presented their own terms for the
evaluation of their proposed methods. The issues that have been
considered for developing these strategies, and how those issues
have been resolved by them are also discussed. From this survey it
can be seen that there is still a lot of work to be done in the field
of data replication in a data grid environment. Some open research
problems are discussed below.

It has been observed that there exists no standard architecture
for a data grid environment. Most of the work done follows a
hierarchal architecture but actually a general graph is a more
realistic architecture. Different modifications of the hierarchal
architecture have been proposed to make it closer to the real grid
environment.

It has been observed that there is no single strategy that
addresses all issues involved in data replication. For example some
strategies consider providing reliability, scalability, fault tolerance
and load balancing while some totally ignore these issues. Some
strategies consider that conserving the network bandwidth is
important, while some strategies have used more bandwidth than
average.

Most of the techniques included in this survey have used
simulation to evaluate and test the algorithms. As a next step these
techniques must be prototyped and tested in real world scenarios.
It will provide a very realistic evaluation of the assumptions that
have been made for those strategies.

It is also observed from this survey that most of the strategies
compare the results with the very basic strategies like LFU and
LRU and they do not compare the proposed ones with the existing
strategies which are already far better than the basic LFE and LRU.
So a lot of experimentation is required to test the known effective
ones.

Another open research question is totally ignored by most
researchers. Most of the work done considers that data in the
grid environment is read only and hence replication is easy. In
reality the data is not always read only; rather it is updateable. The
replication strategies are unable to cope with consistency of data
when it is not read only.

References

[1] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, The data grid:
Towards an architecture for the distributed management and analysis of
large scientific datasets, Journal of Network and Computer Applications 23 (3)
(2000) 187–200.

[2] I. Foster, C. Kesselman, The Grid: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann, 2004.

[3] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid, 2001.
[4] J. Zhang, B.S. Lee, X. Tang, C.K. Yeo, Amodel to predict the optimal performance

of the hierarchical data grid, Future Generation Computer Systems 26 (1)
(2010) 1–11.

[5] I. Foster, The grid: A new infrastructure for 21st century science, 2002.
[6] K. Ranganathan, I. Foster, Design and evaluation of dynamic replication

strategies for a high performance data grid, in: International Conference on
Computing in High Energy and Nuclear Physics, vol. 2001, 2001.

[7] H. Lamehamedi, B. Szymanski, Data replication strategies in grid environ-
ments, in: ICA3PP, 2002, p. 0378.

[8] K. Ranganathan, A. Iamnitchi, I. Foster, Improving data availability through
dynamic model-driven replication in large peer-to-peer communities, in:
CCGrid, 2002, p. 376.

[9] R.M. Rahman, K. Barker, R. Alhajj, Replica placement in data grid: Considering
utility and risk, 2005.

[10] S. Vazhkudai, S. Tuecke, I. Foster, Replica selection in the globus data grid, in:
CCGrid, 2001, p. 106.

[11] H. Stockinger, A. Samar, K. Holtman, B. Allcock, I. Foster, B. Tierney, File and
object replication in data grids, Cluster Computing 5 (3) (2002) 305–314.

[12] Y. Yuan, Y. Wu, G. Yang, F. Yu, Dynamic data replication based on local
optimization principle in data grid, 2007.

[13] F. Schintke, A. Reinefeld, Modeling replica availability in large data grids,
Journal of Grid Computing 1 (2) (2003) 219–227.

[14] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, S. Sekiguchi, Grid datafarm
architecture for petascale data intensive computing, in: CCGrid, 2002, p. 102.

[15] A. Chervenak, et al. Giggle: A framework for constructing scalable replica
location services, 2002.

[16] H. Lamehamedi, Z. Shentu, B. Szymanski, E. Deelman, Simulation of dynamic
data replication strategies in data grids, 2003.
[17] B.D. Lee, J.B. Weissman, Dynamic replica management in the service grid,
in: High Performance Distributed Computing, 2001, Proceedings, 10th IEEE
International Symposium on, 2001, pp. 433–434.

[18] A. Abdullah, M. Othman, H. Ibrahim, M.N. Sulaiman, A.T. Othman, Decentral-
ized replication strategies for P2P based scientific data grid, in: Information
Technology, 2008, ITSim 2008, International Symposium on, vol. 3, pp. 1–8.

[19] L.M. Khanli, A. Isazadeh, T.N. Shishavanc, PHFS: A dynamic replicationmethod,
to decrease access latency inmulti-tier data grid, Future Generation Computer
Systems (2010).

[20] M. Tang, B.S. Lee, C.K. Yeo, X. Tang, Dynamic replication algorithms for the
multi-tier data grid, Future Generation Computer Systems 21 (5) (2005)
775–790.

[21] M. Shorfuzzaman, P. Graham, R. Eskicioglu, Popularity-driven dynamic replica
placement in hierarchical data grids, in: 2008 Ninth International Conference
on Parallel and Distributed Computing, Applications and Technologies, 2008,
pp. 524–531.

[22] R.S. Chang, H.P. Chang, A dynamic data replication strategy using access-
weights in data grids, The Journal of Supercomputing 45 (3) (2008) 277–295.

[23] R.S. Chang, H.P. Chang, Y.T. Wang, A dynamic weighted data replication
strategy in data grids, in: Computer Systems and Applications, 2008, AICCSA
2008, IEEE/ACS International Conference on, 2008, pp. 414–421.

[24] J.M. Pérez, F. Garcıa-Carballeira, J. Carretero, A. Calderón, J. Fernández, Branch
replication scheme: A newmodel for data replication in large scale data grids,
Future Generation Computer Systems 26 (1) (2010) 12–20.

[25] K. Sashi, A.S. Thanamani, Dynamic replication in a data grid using a modified
BHR region based algorithm, Future Generation Computer Systems 27 (2)
(2011) 202–210.

[26] S.M. Park, J.H. Kim, Y.B. Ko, W.S. Yoon, Dynamic data grid replication strategy
based on Internet hierarchy, in: Grid and Cooperative Computing, 2004, pp.
838–846.

[27] Q. Rasool, J. Li, S. Zhang, Replica placement in multi-tier data grid, in: 2009
Eighth IEEE International Conference on Dependable, Autonomic and Secure
Computing, 2009, pp. 103–108.

[28] Y.F. Lin, J.J. Wu, P. Liu, A list-based strategy for optimal replica placement in
data grid systems, in: 37th International Conference on Parallel Processing,
2008, pp. 198–205.

[29] P. Liu, J.J. Wu, Optimal replica placement strategy for hierarchical data grid
systems, 2006.

[30] J.J. Wu, Y.F. Lin, P. Liu, Optimal replica placement in hierarchical data grids
with locality assurance, Journal of Parallel and Distributed Computing 68 (12)
(2008) 1517–1538.

[31] M. Lei, S.V. Vrbsky, X. Hong, A dynamic data grid replication strategy to
minimize the data missed, in: Broadband Communications, Networks and
Systems, 2006, BROADNETS 2006, 3rd International Conference on, pp. 1–10.

[32] M. Lei, S.V. Vrbsky, X. Hong, An on-line replication strategy to increase
availability in data grids, Future Generation Computer Systems 24 (2) (2008)
85–98.

[33] Y. Ding, Y. Lu, Automatic data placement and replication in grids, in: High
Performance Computing, HiPC, 2009 International Conference on, pp. 30–39.

[34] R.M. Rahman, K. Barker, R. Alhajj, Replica placement strategies in data grid,
Journal of Grid Computing 6 (1) (2008) 103–123.

[35] M. Bsoul, A. Al-Khasawneh, E. Eddien Abdallah, Y. Kilani, Enhanced fast
spread replication strategy for data grid, Journal of Network and Computer
Applications (2010).

[36] K. Sashi, A.S. Thanamani, A new dynamic replication algorithm for European
data grid, in: Proceedings of the Third Annual ACM Bangalore Conference,
2010, p. 17.

[37] V. Andronikou, K. Mamouras, K. Tserpes, D. Kyriazis, T. Varvarigou, Dy-
namic QoS-aware data replication in grid environments based on data ‘im-
portance’, Future Generation Computer Systems, Corrected proof, in press
(doi:10.1016/j.future.2011.02.003).

[38] W.P.O. Team, OptorSim, a Replica Optimiser Simulator.
[39] D.G. Cameron, R. Carvajal-Schiaffino, A.P. Millar, C. Nicholson, K. Stockinger,

F. Zini, OptorSim: a grid simulator for replica optimisation, in: UK e-Science
all Hands Conference, vol. 31, 2004.

[40] W.H. Bell, D.G. Cameron, A.P.Millar, L. Capozza, K. Stockinger, F. Zini, Optorsim:
A grid simulator for studying dynamic data replication strategies, International
Journal of High Performance Computing Applications 17 (4) (2003) 403.

[41] D.G. Cameron, R. Carvajal-Schiaffino, A.P. Millar, C. Nicholson, K. Stockinger,
F. Zini, Evaluating scheduling and replica optimisation strategies in OptorSim,
in: Proceedings of the 4th International Workshop on Grid Computing, 2003,
p. 52.

Tehmina Amjad is a Ph.D. Computer Science scholar at
the Computer Science Department of the International
Islamic University, Islamabad, Pakistan. She received her
MSCS degree in 2004 from the same institute. Currently
she isworking as a lecturer in theDepartment of Computer
Science, International Islamic University, Islamabad. Her
research interests are distributed computing, data grids
and database management.

http://dx.doi.org/doi:10.1016/j.future.2011.02.003


T. Amjad et al. / Future Generation Computer Systems 28 (2012) 337–349 349
Muhammad Sher is Chairman of the Department of
Computer Science and an Assistant Professor. He has done
his Ph.D. in Computer Science from TU Berlin, Germany,
and his M.Sc. in Computer Science from Quaid-e-Azam
University, Islamabad, Pakistan. His research interests are
in next generation networks and data grids.
Ali Daud is an Assistant Professor at the Computer
ScienceDepartment of the International IslamicUniversity
Islamabad, Pakistan. He received his Ph.D. Computer
Science degree from Tsinghua University, Beijing, China in
2010. His areas of interest are Text Mining, Information
Retrieval, Information Extraction, Social NetworkAnalysis,
Data Grid, and Machine Learning.


	A survey of dynamic replication strategies for improving data availability in data grids
	Introduction
	Motivation
	Availability of data in data grids and replication
	Classification of existing data replication techniques
	Issues involved in data replication
	Dynamic replication techniques
	Techniques for peer to peer architecture and decentralized decision making
	Techniques for multi-tier architecture and decentralized decision making
	Techniques for multi-tier architecture, centralized decision making and limited amount of storage
	Techniques for hybrid architecture, decentralized decision making and limited amount of storage
	Techniques for multi-tier sibling tree architecture, centralized decision making and limited amount of storage
	Techniques for multi-tier sibling tree architecture, decentralized decision making and limited amount of storage
	Techniques for multi-tier architecture to ensure a balanced workload
	Techniques for multi-tier sibling tree architecture to ensure a balanced workload
	Techniques for single-tier architecture to minimize data missed
	Techniques for general grid topology and limited amount of storage
	Techniques for general graph architecture, decentralized decision making
	QoS aware data replication

	Feature comparison and its tabular representation
	Benefits of data replication strategies
	Different parameters and their importance
	Different architectures for data grids
	Different assumptions
	Research methods used
	Features of replication strategies

	Conclusion and future research
	References


